
Service Developer’s Guide

November 1999

STATIONworks Version 2.1
A FASTech MES Product

This document contains information that is the property of Brooks Automation, Inc., Chelmsford, MA 01842, and is furnished for
the sole purpose of the operation and the maintenance of FASTech products of Brooks Automation, Inc. No part of this publication
is to be used for any other purpose, and is not to be reproduced, copied, disclosed, transmitted, stored in a retrieval system, or trans-
lated into any human or computer language, in any form, by any means, in whole or in part, without the prior express written consent
of Brooks Automation, Inc.

Published byBrooks Automation, Inc.

15 Elizabeth Drive / Chelmsford, Massachusetts 01248 / USA
(978) 262-2400
FAX (978) 262-2500
http://www.brooks.com OR www.fastech.com

Copyright© 1999 by Brooks Automation, Inc. All rights reserved.

Though at Brooks Automation, Inc., we make every effort to ensure the accuracy of our documentation, Brooks assumes no responsibility
for any errors that may appear in this document. The information in this document is subject to change without notice.

Sample code that appears in documentation is included for illustration only and is, therefore, unsupported. This software is provided free of chargeand
is not warranted by Brooks in any way. FASTech Products Technical Support will accept notification of problems in sample applications, but Brooks
will make no guarantee to fix the problem in current or future releases.

FASTech’s CELLman, CELLtalk,CELLguide, Grapheq, WINclient, TOM, STATIONSworks, and FASTspc are trademarks of Brooks Automation, Inc.
FASTech, FASTech’s CELLworks and FACTORYworks are registered trademarks of Brooks Automation, Inc.

Acrobat Reader is a trademark of Adobe Systems Incorporated.
CodeCenter, ObjectCenter, and TestCenter are trademarks of CenterLine.
DIGITAL UNIX is a trademark of Digital Equipment Corporation.
Glance is a trademark of Hewlett-Packard
HP-UX and Glance are trademarks of Hewlett-Packard Company.
Ingres is a trademark of Ingres Corporation.
ORACLE, ORACLE 7, SQL*Net, and SQL*Plus are registered trademarks of Oracle Corporation.
OSF/Motif is a trademark of Open Software Foundation, Inc.
POLYCENTER is a trademark of Computer Associates International, Inc.
PostScript is a registered trademark of Adobe Systems, Inc.
Purify, Quantify, PureCover are trademarks of Pure Software
Seagate Crystal Reports and Seagate Crystal Info are trademarks or registered trademarks of Seagate Technology, Inc. or one of its subsidiaries
SEMI is a trademark of Semiconductor Equipment and Materials International.
Solaris is a trademark of Sun Microsystems, Inc.
SPARCompiler, UltraSPARC, and all other SPARC trademarks are registered trademarks of SPARC International, Inc.
Sun is a trademark of Sun Microsystems, Inc.
Sybase is a trademark of Sybase, Inc.
System V and SVID (System V Interface Definition) are trademarks of American Telephone and Telegraph Co.
TIB is a trademark of Teknekron Software Systems, Inc.
Tools.h++ and DB.h++ are trademarks of RogueWave Software, Inc.
UNIX is a registered trademark of X/Open Company, Ltd.
SmartShapes and Visio are registered trademarks of Visio Corporation.
Windows NT, Active X, and Visual Basic are trademarks of Microsoft Corporation.
Workstream is a trademark of Consilium, Inc.
X Window system is a trademark of the Massachusetts Institute of Technology.
XRunner is a trademark of Mercury Interactive.
All other product names referenced are believed to be the registered trademarks of their respective companies.

Table of Contents
About This Manual

Chapter 1 Getting Started with Samples

Combining Tools and Services ... 1-2
Establishing Database Components.. 1-3
Working with Sample Services/Applications ... 1-4
Building a Database of Sample Tools .. 1-5
Compiling Sample Services.. 1-7
Removing Samples .. 1-8
Sample Services for Testing/Debugging... 1-9
Understanding Objects in TOM.. 1-10

Chapter 2 Developing Service Infrastructure

Defining the Service’s Role in the Application .. 2-2
Writing a Custom Service—Steps to Take .. 2-2
Creating the Visual Basic Project ... 2-4
Adding Custom Controls to Your Project .. 2-4
Adding Required Files to Your Project... 2-5
Creating References for Your Project .. 2-5
Assigning the Project Name and Title .. 2-6
Creating a Class Module and Declaring Service Name.................................... 2-10
Understanding References, Variables, & Constants Required.......................... 2-12
Creating References, Variables, and Constants .. 2-13
Fitting ServicesTogether in Visual Basic Project ... 2-14

Chapter 3 Writing Your Handler Methods

Writing Required Handler Methods That TOM Triggers................................... 3-2
Understanding the OnCreate Handler Method ... 3-5
Writing the OnCreate Handler Method .. 3-6
Defining Method Objects for Your Service in OnCreate.................................... 3-9
Defining Event Objects for Your Service in OnCreate 3-11
Writing the LetAttribute Handler Method .. 3-14
Writing the GetAttribute Handler Method ... 3-15
Writing the OnInitialize Handler Method... 3-16
Writing the OnExecute Handler Method .. 3-20
iii
Service Developer’s Guide

Table of Contents
Executing Existing Methods in OnExecute .. 3-22
Writing the OnMethodCompleted Handler Method... 3-25
Writing the OnSubscribedEvent Handler Method.. 3-30
Triggering Your Service Event .. 3-31
Writing the OnVerify Handler Method... 3-33
Verifying a Service—The Nuts and Bolts... 3-36
Writing the Version Handler Method.. 3-40
Writing the OnTerminate Handler Method... 3-41
Writing a Terminate Class Method .. 3-41

Chapter 4 Creating a Tool for Your Service

Working with TOM Builder.. 4-3
Creating a New Tool ... 4-4
Creating a New Resource ... 4-5
Adding Resources to the Tool... 4-6
Adding Your Custom Service to Database ... 4-8
Setting Properties of Your Service.. 4-9
Assigning Services to Tool Resources.. 4-11
Creating a New Service Dictionary .. 4-13
Assigning the Dictionary to a Service .. 4-16
Creating a New Resource Dictionary ... 4-17
Assigning the Dictionary to Resources... 4-20
Creating DataDefs... 4-21
Cloning DataDefs ... 4-27
Creating Attributes.. 4-28
Finalizing Tool by Releasing It... 4-31
Building TOM Database (Containing New Tool)... 4-32

Chapter 5 Debugging/Testing Your Service

Preparing to Use Your Service in TOM Explorer... 5-2
Running Your Service in Debug Mode... 5-4
Executing Methods through TOM Explorer ... 5-8
Verifying the Service from TOM Explorer... 5-11
Exiting TOM Explorer.. 5-14
Compiling Your Service—Final Compile... 5-15
Testing Your Service .. 5-15
Using Your Service in an Application ... 5-15

Chapter 6 Reusing Existing Services in Yours: Containment

Choosing a Related Standard Service... 6-2
Writing the Container Service .. 6-3
Writing Handler Methods for Low Level Services... 6-6
iv
Service Developer’s Guide

Table of Contents
Chapter 7 Dealing with Errors

Deciding to Raise, Extend, or Trigger an Error .. 7-2
Extending an Error.. 7-3
Raising an Error .. 7-6
Triggering an Error ... 7-8

Chapter 8 Creating Service to Initialize Tool

Planning the Approach.. 8-2
Create Constants and References in Declarations ... 8-3
Creating Method Object in OnCreate .. 8-3
Checking Required Services in OnInitialize .. 8-3
Subscribing to Events in OnInitialize .. 8-4
Setting Up TOM Notifications ... 8-4
Starting the StartTool Method in OnExecute ... 8-4
Continuing to Chain Methods in OnMethodCompleted 8-5
Executing Last Method in OnSubscribedEvent ... 8-6
Creating the Service DLL .. 8-7
Creating Service, Tool, Dictionaries in Database .. 8-7
Running Service in Visual Basic Debugger.. 8-8

Appendix A Template/Sample Service Code

Complete Code for the Service.. A-2

Appendix B Container Service Code

Complete Code for Container Service ..B-2

Appendix C Developing Equipment Services: Using Sample Services

Finding Sample Equipment Services/Tools ..C-2
Building Replacement Services Tool Database ...C-2
Using Sample (Replacement) Equipment Services ...C-2
Examining Sample Level 1 Service ...C-3
Examining Sample Level 2 Service ...C-3
Examining Sample Level 3 Service ...C-4
Removing Samples ..C-4

Appendix D Developing Help Files for Services: Documentation Kit

Writing Help Files for Your Custom Services... D-2

Appendix E Using Testing Services

FTIAttributeForms..E-2
FTISizeInfo...E-8
v
Service Developer’s Guide

Table of Contents
Chapter F Code for Initialize Tool Service

Complete Code for the Init.sample2 Service ..F-2

Index
vi
Service Developer’s Guide

About This Manual

Introduction

Topics in This Chapter

Service Developer’s Guide provides basic information required to start
developing Services for STATIONworks.

The manual takes you step-by-step through the process of developing a
Service using a sample “template” Service provided with the product.

Purpose of This Manual, p. viii

Prerequisites and Related Manuals, p. viii

Conventions, p. ix

Information Included in This Manual, p. ix
vii
Service Developer’s Guide

About This Manual

u

ice,

ce

 to
Purpose of This Manual

This manual is designed for Service developers with background in:

■ Coding in Visual Basic
■ Knowledge of SECS and/or GEM messaging standards
■ Knowledge of VFEI drivers

To develop a driver, which combines a Tool with one or more Services, yo
should have a copy of the equipment manufacturer’s manual.

Prerequisites and Related Manuals

Before you read this manual, you should be familiar with the following
manuals for TOM:

■ STATIONworks Tool Deployment Guide
(or Using TOM Explorer in TOM Help file)

■ TOM Object Reference
(or Tool Object Model Reference in TOM Help file)

Companion
Manuals/Help Files

If you plan to use Methods from any standard TOM Services in your Serv
you can learn more about those Services in:

■ TOM Standard Services Reference
(or Standard Services Reference in TOM Help file)

For details on the handler support routines you use in developing a Servi
and a quick reference on the handler methods, refer to:

■ Service Developer’s Reference
(or Authoring a TOM Service in TOM Help file)

When you are ready to create a Tool in the database or add your Service
the database, you use TOM Builder and refer to:

■ TOM Builder User’s Guide, a distinct Help file in the STATIONworks
menu.

■ For information on working with Services the interact with
FACTORYworks and the MBX, refer to theSTATIONworks Host Service
Developer’s Guide.
viii
Service Developer’s Guide

About This Manual

nts,

the

the

w.

nd

so

e
se

g

d

Conventions

This manual uses the Visual Basic syntax conventions, includingitalics for
text that should be replaced, the word Optional before appropriate argume
andbold for required literal text.

This manual alters one Visual Basic convention—for convenience it uses
underscore character to continue lines of sample code even in middle of
strings or paths, breaking lines of code wherever necessary to fit them in
text column.

Courier font distinguishes names of the following in the text: handler
methods, handler support routines, Methods, Events, Properties, and
Attributes.

Information Included in This Manual

The information in this manual is divided into the chapters described belo

The first five chapters cover developing a Service and Tool from scratch a
take it from the first lines of code through the debugging process. Those
chapters illustrate the process using a template Service provided with the
product. After that, each chapter explores a particular topic, first writing a
container Service, then handling errors in a Service. All sample code is
included in the appendixes.

Chapter Description

About This Manual Explains the purpose of the manual and how it is organized. Al
presents a list of related manuals.

1 Getting Started with Samples Explains where to find the sample Services and applications
shipped with STATIONworks and covers how to build a databas
of the sample Tools those Services/applications use. You may u
the same techniques described here to create an actual Tool
database.

2 Developing Service
Infrastructure

Takes you step-by-step through the process of laying down the
foundation for your Service, from conceiving the idea to selectin
the controls to coding the general declarations.

3 Writing Your Handler
Methods

Takes you through the process of writing the handler methods
TOM expects to find in your Service. Covers several commly use
handler support routines.
ix
Service Developer’s Guide

About This Manual

s a

dle

.

e.

s a

ices
4 Creating a Tool for Your
Service

Covers how to create a conceptual Tool for a high level Service
(like the one in this manual) and add it to the database. For
information on developing drivers, contact Brooks Automations’
FASTech Products deployment or LightsOut Software, Inc.

5 Finalizing Your Service Covers adding your Service to the database, compiling it, and
debugging it. Takes you step-by-step through debugging the
sample Service using TOM Explorer and the Visual Basic
debugger.

6 Reusing Existing Services in
Yours: Containment

Explains how you can reuse an existing Service within your
Service code by containing the Service, so your Service become
Container Service. This technique saves you work when the
Service you plan to write closely resembles an existing standard
Service.

7 Dealing with Errors Covers how to use the handler support routines designed to han
errors in your Service.

A Template/Sample Service
Code

Provides a complete listing of the template sample Service code

B Container Service Code Provides a complete listing of the sample container Service cod

C Developing Equipment
Services

Presents information about the sample replacement Services
included with STATIONworks. These Services replace the
standard TOM equipment (SECS, GEM, VFEI) Services for
equipment that is not completely standard. You may need to
develop Services like these and can use the samples provided a
starting point.

D Developing Help Files for
Services

Introduces the documentation kit provided with STATIONworks,
which instructs you on how to develop Help files for your custom
Services.

E Using Testing Services Presents some information on how to use sample testing serv
included with the product. These samples are intended as
guidelines to developing your own testing Services.

Index Contains a complete index.

Chapter Description
x
Service Developer’s Guide

INFO

p

Getting Started with Samples 1

Introduction

Topics in This Chapter

This chapter presents vital information for using the sample Services and
applications that ship with STATIONworks. It also explores the relationshi
between Tools and Services.

Combining Tools and Services, p. 1-2

Establishing Database Components, p. 1-3

Working with Sample Services/Applications, p. 1-4

Building a Database of Sample Tools, p. 1-5

Compiling Sample Services, p. 1-7

Removing Samples, p. 1-8

Understanding Objects in TOM, p. 1-10
1-1
Service Developer’s Guide

Combining Tools and Services Getting Started with Samples

e

e

nd

xt
l;
Combining Tools and Services

Usually, you write a Service to control a Tool. If the Tool is SECS/GEM
compliant, you may not even need to write a Service, because you can us
standard Services.

However, you may need to write a new Service for a non-standard Tool or
write a higher level service, a Service that does not necessarily directly
control a piece of equipment.

Say you want to write a higher level service. So, you don’t need a Tool for
that Service, right? Wrong. You always need a Tool, even though it may b
only a conceptual Tool.

The combination of a Tool and a Service is called a TOM driver. A higher
level driver (that uses higher level Services) may use a Tool that has
Resources that map to virtual devices. For instance, a Resource called
ProcessControlDevice might be a virtual device for a series of statistical
process control Services.

You define your Tool using TOM Builder. You must coordinate certain
information that links the Tool to the Service:

■ Define a Tool in the database
■ Define Resources for the Tool
■ Create the Service in the database
■ Assign the Service to the Tool in the database
■ If your Service requires Attributes, you must add them to the database

Your Service may also require access to existing Dictionaries or a unique
Dictionary of its own. To handle this situation, you need to:

■ Create your own Dictionaries if you need them—Service Dictionaries a
Resource Dictionaries

■ Add DataDefs to the Dictionaries

■ Assign Dictionaries to Services

■ Assign Dictionaries to Resources

This manual presents some basics on developing a sample database (ne
section) and later ties in how to create DataDefs and Attributes for the Too
however, for the complete picture on how to develop a Tool refer to theTOM
Builder User’s GuideHelp file.
1-2
Brooks Automation

Establishing Database ComponentsGetting Started with Samples

is

to
you
ts.
ady

t you
es in
ur
Establishing Database Components

Before you develop a new driver, you must establish the driver database
components from the existing database using TOM Builder:

1. When you first load TOM Builder, the database full of existing drivers
located under\FASTech\Sw\Drivers and is in the following subdirec-
tories full of several components for each driver:

◆ Dictionaries
◆ Manufacturers
◆ Resources
◆ Services
◆ Tools

2. Under each of these directories, you see.tbf (TOM builder file) files for
each component. The.tbf files have easy to understand names, like
BTU Thermal Process.tbf or tomss.Verification.tbf .
You can check each of these components in to a revision control system
keep track of versions of that component. To use the original database,
do not have to build it; it has already been built using these componen
But to alter the database, create a new one, or work with one you alre
have, you must do one of the following:

◆ Alter the components, then build the database

◆ Create a new series of components, then build them into a new
database

From here, let’s take a look at how to create an entirely new database tha
can have contain the Tools and Resources required for the sample Servic
this manual. You would follow the same steps to create a database for yo
custom Services.

N OT E Before you proceed to edit the database, you should either
check all.tbf files into a revision control system or copy
them to a backup directory.
1-3
Service Developer’s Guide

Working with Sample Services/Applications Getting Started with Samples

 that
Working with Sample Services/Applications

After you install STATIONworks, if you installed the Developer version of
the software, you can find the sample Services and applications for this
manual and theTOM Application Developer’s Guide in the following
directories:

Samples Documented in Manual Chapters

Each documented sample comes with a series of .tbf files for its required
custom Tool. They are in the directories under ..\Drivers (see preceding table
for details). You must build a database containing both these .tbf files and
those from the Standard SECS Dictionary.

The code for each sample has been shipped as a Visual Basic project file
you must compile. You can compile and run each using the Visual Basic

N OT E Sample code that appears in documentation or is included
with the product is included for illustration only and is,
therefore, unsupported. This software is provided free of
charge and is not warranted by Brooks in any way. Brooks
Technical Support will accept notification of problems in
sample applications, but will make no guarantee to fix the
problem in current or future releases.

Sample Code, Manual, & Directory Location Associated Tool & Location

Template Service (Service Developer’s Guide, Chapters
2-5 and Appendix A)

\FASTech\Sw\Dev\Samples\Services\demo.vbp

Stepper (not a real tool)

\FASTech\Sw\Dev\Samples\Services\Drivers\

Container Service (Service Developer’s Guide, Chapter 6
and Appendix B)

\FASTech\Sw\Dev\Samples\Contain\nv10\nv10.vbp

NV10

\FASTech\Sw\Dev\Samples\Contain\Drivers\

Init Service with StartTool Method (Service Developer’s
Guide, Chapter 7 and Appendix F)

\Fastech\Sw\Dev\Samples\StartTool\init.vbp

GenTool (not a real Tool, a generic Tool)

\Fastech\Sw\Dev\Samples\StartTool\Drivers

Sample MyRecipe Application (TOM Application
Developer’s Guide)

\FASTech\Sw\Dev\Samples\apps\MyRecipe\myrecipe.vbp

BTU recipe example

\FASTech\Sw\Dev\Samples\apps\MyRecipe\
Drivers\
1-4
Brooks Automation

Working with Sample Services/ApplicationsGetting Started with Samples

the
of

se

s

ry

ries

Tools

ase,

w

 the
compiler. To see the effects of theTemplate Service (see table above) you
should:

1. Build the database containing its Tool (location indicated in preceding
table) using TOM Builder.

2. Compile the Service in the Visual Basic debugger.

3. Then open the stepper Tool in TOM Explorer following the instructions
provided in Chapter 5.

4. You use TOM Explorer and the Visual Basic debugger to step through
code and see it print in the Debug window indications of what portion
the code is executing.

Building a Database of Sample Tools

To build the database, you use TOM Builder. Full instructions for how to u
TOM Builder are included in theTOM Builder User’s GuideHelp file,
available from the Start menu by selecting:

Start => Programs => FASTech STATIONworks Beta =>
TOM Builder User’s Guide

To build a database that contains the sample Tools for the sample Service
and/or applications or to build your own database:

1. Start TOM Builder by selectingStart => Programs => FASTech
STATIONworks Beta => TOM Builder .

2. Proceed to the\FASTech\Sw\Dev\DriversCore directory. In this
directory, you find theDictionaries andServices subdirectories.
TheDictionaries subdirectory contains the SECS Standard Dictiona
and theServices directory contains all standard TOM Services. The
Dictionaries and Services are in .tbf files. When you create new Tools or
Services, you should use the Dictionaries and Services in these directo
as a foundation for your database. Later, when you build the database
using these .tbf files (along with the additional ones provided for the
samples), the resultant database contains both standard and custom
and Services.

3. To include the standard Dictionaries and Services in your sample datab
copyDriversCore and theDictionaries andServices
subdirectories from beneath it to the location where you’d like your ne
database.Never work on the original database. Leave the original intact
to be sure you can return to it in the event of a serious error.

You also find theManufacturers directory underDriversCore and
may copy that directory to your samples database as well. If you copy
manufacturers, when you edit the database with TOM Builder, these
1-5
Service Developer’s Guide

Working with Sample Services/Applications Getting Started with Samples

add

r

ike
al

w

ols

The

, it
manufacturers later appear in the list you can choose from when you
a Tool to the database.

4. Create two additional subdirectories underDrivers —Resources and
Tools . Make them parallel to the other directories under your copy of
DriversCore .

5. To work with the sample Services, copy the sample .tbf files from under
their ..\Drivers\Dictionaries , ..\Drivers\Resources , and
..\Drivers\Tools directories to the corresponding directories in you
new database location. You may want to include all sample Tools in a
single database for convenience.

6. To work with a new database that doesnot contain the sample Services,
copy any existing Tools or Resources you’d like to use in your new
database from\FASTech\Sw\Drivers\Tools and
\FASTech\Sw\Drivers\Resources to the new directories you have
created. You can usually identify the Tool and Resource by its name, l
Disco Saw 600.tbf , the same name for Tool and Resource. In unusu
cases, the Tool and Resource have different names, such as theMBX
Tool.tbf and theMessaging Resource.tbf , both required for
ProtocolMBX.

7. Indicate where you would like TOM Builder to find the new database
components (.tbf files) by selectingFile => Directory Locations
from the menu bar and filling in theComponent File Directory
Location field. (You can use Browse to find the correct path to your ne
directory.) The path to your new directory should go down to the
DriversCore level, so if you put your copy ofDriversCore under
D:\Databases, the path to the directory should be
D:\Databases\DriversCore .

8. Once you have indicated the location of the directories, the sample To
appear with the others under theTools tab in the right-hand pane of TOM
Builder (also called theComponent View).

9. To build the database, return to the menu bar and selectFile => Build
Database...

10. When the dialog box displays, enter the name of the database to build.
database name must have a .mdbextension.

Give the database a few minutes to build. When TOM Builder has finished
displays a message on the status bar along the bottom of the window
indicating the database build is complete.
1-6
Brooks Automation

Compiling Sample ServicesGetting Started with Samples
Compiling Sample Services

You do not have to compile the samples to use them. However, you can
“build” a large number of the samples provided by executing the following
steps:

1. Add thevbpath environment variable to your system properties. Set this
environment variable to where the build script should find Visual Basic
installed on your machine. For instance, if Visual Basic is installed in
c:\VisualBasic , that is what you should set this variable to.

You set environment variables by selectingStart => Settings =>
Control Panel , then double clicking on the System icon to open the
System Properties , and selecting theEnvironment tab to find the
system variables.

2. Edit thedatabase.bat file (underFASTech\Sw\Dev\Samples) to be sure the
following variables point to the correct directories on your hard drive:

set TOM_BUILDER_DIR=..\..\Components\TomBuilderl

set TOM_DRIVER_DIR=..\..\Components\TomBuilder\TmpDriver

set CORE_DRIVER_DIR=..\DriversCore

3. Run thebuild.batscript (underFASTech\Sw\Dev\Samples). It compiles the
following samples and places the executable, DLL, database (.mdb), and
Help files in theFASTech\Sw\Dev\Samples\bin directory:

Sample Application

MyRecipe.exe
MyRecipe.mdb

Sample Container Service

nv10.dll
nv10.mdb

If you compile the .dll on your machine, it is automatically registered.
Otherwise, be sure to register thenv10.dll with regsvr32.exe to use this
Tool.

Replacement Equipment Services

replace.mdb replss2.dll
replss1.dll replss3.dll

N OT E When you build the samples, you do not build the sample
shown in this manual. Instead, you compile and debug the
code from this manual in Chapter 5, where you step through
the debugger to see it perform.
1-7
Service Developer’s Guide

Compiling Sample Services Getting Started with Samples

d
that

e

like
e

The replacement equipment Services are examples of Services that woul
each replace a particular standard TOM Service for a piece of equipment
is not quite standard. You may need to write this type of Service. For more
information on these writing such Services and for more information on th
samples provided, refer to Appendix C.

Help File for Replacement Equipment Services

replace.hlp
replace.cnt

4. Run theregister.bat script (underFASTech\Sw\Dev\Samples\bin). It
registers the DLLs for the sample Tools.

Removing Samples

When you have finished using these sample Services, save any you would
to keep in a new location. If you compiled the samples, to remove both th
source and the compiled files from your machine, execute thecleanup_all.bat
script located inFASTech\Sw\Dev\Samples.

C A U T I O N
Writing replacement Services is intended for
advanced developers. Brooks Automation
recommends you step through this manual chapter by
chapter in sequence before attempting to write a
replacement Service.
1-8
Brooks Automation

Sample Services for Testing/DebuggingGetting Started with Samples
Sample Services for Testing/Debugging

Another set of sample Services that you may find useful after you have
become a more advanced user of this product are available in the
FASTech\Sw\Dev\Samples\Misc\Level5 directory. Here, you find the source
code for some level 5 Services designed to be useful during testing and
debugging. You can also open the source code for these Services and
customize them.

These Services are contained within a single .vbpproject namedFTIdev5.vbp.
Inside the project, you find the following .cls files:

■ 5AttrFrm.cls—A Service that displays a form where you can set/alter
Service Attribute settings quickly during testing.

■ 5SizeInf.cls—A Service that indicates the amount of RAM the code you
are runnning is using.

These files contain the source code for the following .tbf files, which you can
find in theFASTech\Sw\Dev\Samples\Misc\TBFsdirectory:

■ FTIdev5.FTIAttributeForms.tbf
■ FTIdev5.FTISizeInfo.tbf

To use these Services, you must add these files to yourServices directory
underDrivers and rebuilt the samples database. For details on using these
Services, refer to Appendix E.

C A U T I O N
Sample code that appears in documentation is
included for illustration only and is, therefore,
unsupported. This software is provided free of charge
and is not warranted by Brooks in any way. Brooks
Technical Support will accept notification of
problems in sample applications, but Brooks will
make no guarantee to fix the problem in current or
future releases.
1-9
Service Developer’s Guide

Understanding Objects in TOM Getting Started with Samples

.

Understanding Objects in TOM

Before you proceed, you should understand the Tool Object Model (TOM)
Acquaint yourself with it using TOM Explorer and following the Help file or
referring to theSTATIONworks Tool Deployment Guide.

You may also want to refer to theTOM Object Reference.
1-10
Brooks Automation

INFO

e. It
Developing Service Infrastructure 2

Introduction

Topics in This Chapter

This chapter covers the setup to get you started developing a TOM Servic
refers to the template Service (a dummy Service) provided under
\FASTech\TOM\Dev\Samples\Services\demoand the Tool that accompanies it
under\FASTech\TOM\Dev\Samples\Services\Drivers.

The complete code for the Service’s class is listed in Appendix A.

Defining the Service’s Role in the Application, p. 2-2

Writing a Custom Service—Steps to Take, p. 2-2

Creating the Visual Basic Project, p. 2-4

Adding Custom Controls to Your Project, p. 2-4

Adding Required Files to Your Project, p. 2-5

Creating References for Your Project, p. 2-5

Assigning the Project Name and Title, p. 2-6

Creating a Class Module and Declaring Service Name, p. 2-10

Understanding References, Variables, & Constants Required, p. 2-12

Creating References, Variables, and Constants, p. 2-13

Fitting ServicesTogether in Visual Basic Project, p. 2-14

N OT E You must work with the Professional or Enterprise Edition of
Visual Basic Version 5.00 when developing TOM Services
or applications.
2-1
Service Developer’s Guide

Defining the Service’s Role in the Application Developing Service Infrastructure

he
e
f

ry

rk

E

).
:

nd

u

Defining the Service’s Role in the Application

Before you write your Service, you should decide exactly what you want t
Service to do. Then you are in a position to see whether or not some of th
tasks the Service should perform are available in the standard Services o
TOM.

For instance, if your Service needs to communicate with equipment to car
out its tasks, it might be able to use methods and events in
SecsLoopBackDiagnosticandProtocolSECS to carry out those tasks.

While you develop the flowchart for your Service, prepare a list of other
Services and their methods/events that you would like your Service to wo
with. It’s a good idea to have this information handy before you start your
Service.

Writing a Custom Service—Steps to Take

Any Service you write for TOM can be an in-process or out-of-process OL
server. You embed the OLE server in a TOM application to use it.

To write a Service, when you start up Visual Basic, create a Visual Basic
project that is an ActiveX DLL (in-process) or ActiveX EXE (out-of-process
Then carry out the tasks in each of the sections that follow, outlined below

Set Up the Service
Project

■ Add any custom controls your Service requires to the Visual Basic
Toolbox in your project.

■ Create references to the TOM control and (optionally) the FASTech
WinSECS control.

■ Add the required files so that you can use the various handler support
routines (like APIs) in TOM (such ashandler.bas).

■ Add theSmain.bas file provided with TOM to your Visual Basic project.
This file defines the required Sub Main routine.

Write the Service
Code

■ (recommended) Define constants for other Services yours might use a
the methods, events, and parameters of those Services.

■ Create a class module and declare the Service name in it. You need a
separate class module for each Service, but should put all Services yo
want to distribute in a single .DLL in the same Visual Basic project.

N OT E If you are not familiar with how to write an OLE server, you
should look up how to in theProgrammer’s Guide and the
Professional Featuresmanual forMicrosoft Visual Basic.
2-2
Brooks Automation

Defining the Service’s Role in the ApplicationDeveloping Service Infrastructure

der
n,

r

■ Define variables required by your Service.

■ Define references to TOM objects and handlers.

■ Write handler methods that trigger on actions and write them in the or
presented below (not all of those listed are required; for more informatio
refer toWriting Required Handler Methods That TOM Triggers, p. 3-2):

◆ OnCreate

◆ GetAttribute

◆ LetAttribute

◆ OnInitialize

◆ OnExecute

◆ OnMethodCompleted

◆ OnSubscribedEvent

◆ OnVerify

◆ Version

◆ OnTerminate

TOM uses these handler methods to run your Service. In addition, you
can write two other handler methods that are not illustrated in this
manual:

◆ OnStartup

◆ OnTimerEvent

■ Write additional private functions your Service requires—ones the
handler methods call that extend the action that occurs in each handle
method. For instance,OnVerify might call a private function to carry out
some deeper detail of the verification process orOnCreate might call a
private function to create events within the Service.

Make the DLL ■ Make an the DLL or EXE (using the Visual Basic menu selection).

Modify the
Database

■ Add your Service to the TOM database.

■ In the database, associate the Service with Resources of the Tool.
2-3
Service Developer’s Guide

Creating the Visual Basic Project Developing Service Infrastructure

lect

n
o

lect
Creating the Visual Basic Project

When you first open Visual Basic and the New Project dialog appears, se
ActiveX EXE for the project type and clickOpen.

Adding Custom Controls to Your Project

Your Visual Basic project must include some custom controls to work with
the Tool Object Model (TOM). You add these controls:

1. Open theComponents box (by selectingProject => Components) .

2. Select the Lights Out TOM Control : compnets.pcx

This control is required in all STATIONworks/TOM Services. This actio
adds the TOM control to the Visual Basic Toolbox in your project. It als
makes the TOM control available for your Service to use.

3. If you want to use the secs handler support routines, you should also se
theFASTech WinSECS Control .
2-4
Brooks Automation

Adding Required Files to Your ProjectDeveloping Service Infrastructure

ed
find

.

Adding Required Files to Your Project

In addition to the custom controls you need to work with TOM, you also ne
particular files to ensure you have access to handler support routines. You
those files in the\FASTech\STATIONworks\Dev\Services directory:

1. To be able to work with thesrv handler support routines from TOM, add
theHandler.bas file provided with TOM to your project.class2.pcx

2. If you want to use thesecs handler support routines from TOM, add the
SecsL1.bas file to your Visual Basic project.

In addition, to be sure your project has theSub Main routine:

3. Add theSmain.bas file provided with TOM to your Visual Basic project.

Creating References for Your Project

Your Visual Basic project must include some references to work with TOM
To create those references:

1. Open theReferences box (by selectingProject => References) .

2. In all TOM Services, you must create references to theLightsOut TOM

Control and theTool Object Model . demorefs.pcx

This file provides
handler support
routines
2-5
Service Developer’s Guide

Assigning the Project Name and Title Developing Service Infrastructure
Assigning the Project Name and Title

When you save the project and assign it a name, such asdemo.vbp, you
should also:

1. Open theProject Properties box (by selectingProject =>
<app> Properties).

2. Set theProject Name (under theGeneral tab) to the same name as the
.vbp file. Later, you use this name as the Service’sProvider when you
add the Service to the database.project.pcx

3. Note that theStartup Object is Sub Main , which you have access to
because you includedSmain.bas in the project.

Provider

N OT E TOM Tip — Projects

Add your assigned prefix to the name of the project (such as
MY to produceMYdemo.vbp) to identify the project as yours.
You should select two or three characters to be a unique
prefix for your organization.
2-6
Brooks Automation

Assigning the Project Name and TitleDeveloping Service Infrastructure
4. Later, you may want to add the name of theHelp File and the
HelpContextID .

5. Also, be sure theProject Type is ActiveX EXE .

6. Under theMake tab, be sure to set theTitle to the name of the .vbp file
also.projmake.pcx

7. Under theCompile tab, you should selectCompile to Native Code

andOptimize for Fast Code . projcomp.pcx
2-7
Service Developer’s Guide

Assigning the Project Name and Title Developing Service Infrastructure
8. Under theComponent tab, selectActiveX Component underStart

Mode. projcmpt.pcx

9. UnderVersion Compatibility , selectBinary Compatibility . .

C A U T I O N
If you do not setVersion Compatibility to
Binary Compatibility , when you try to use your
custom Service on another machine, you will not be
able to successfully register the .dll.
2-8
Brooks Automation

Assigning the Project Name and TitleDeveloping Service Infrastructure
10. Under theDebugging tab, for purposes of running the demo, selectWait
for components to be created . projdbug.pcx
2-9
Service Developer’s Guide

Creating a Class Module and Declaring Service Name Developing Service Infrastructure

asily

ting
Creating a Class Module and Declaring Service Name

1. In Visual Basic, create a class module and assign it a name that you can e
identify it by. For instance, let’s name the sample Service classsample.cls.
This name should be distinct from the project name. class2.pcx

2. Open the class properties by right clicking on the class name and selec
Properties from the menu.props.pcx

3. In theName property for the
Visual Basic class module,
enter the name of the class
(refer to next illustration).

The value you assign to the
Name property of the Visual
Basic class becomes theName
property of the Service you
develop.

class file for
sample Service

C A U T I O N
When you assign names to new Services that do not
replace any existing Service, you should add a
unique prefix for your organization to ensure you do
not inadvertently overwrite an existing Service.
2-10
Brooks Automation

Creating a Class Module and Declaring ServiceNameDeveloping Service Infrastructure

s the

e

 is
4. When assigning the value of theInstancing property, be sure to select
5 - MultiUse .

5. UnderGeneral Declarations , declare the Service name as a private
constant so that the Service name later appears in the lists of Service
TOM Explorer and the TOM Builder display:

Private Const SERVICE_NAME = " filename.ExampleService"

The constant should be calledSERVICE_NAME or something similar.
Brooks recommends that thefilename be the name of the Visual Basic
project that contains your Services as well as the name assigned as th
Service’sProvider in the TOM database. You should be sure to use a
prefix in front of the name of every file you produce to ensure its name
unique.

C A U T I O N
If you are unable to execute the previous steps,
it is probably because you are not using the
Professional or Enterprise Edition of
Visual Basic 5.0.

N OT E TOM Tip—Constructing SERVICE_NAME in Code

If you want to later be able to change the name of the .DLL
without having to make changes to your code, you can create
a local variable calledSERVICE_NAMEand have a class level
function namedInitialize that sets the local variable as
follows:

Private Sub Class_Initialize()

SERVICE_NAME = App.Title + TypeName(Me)

End Sub

This technique saves you from recoding your Service if you
change the project’s name.
2-11
Service Developer’s Guide

Understanding References, Variables, & Constants Required Developing Service Infrastructure

eral

utes

n

r

h

Understanding References, Variables, & Constants Required

In theGeneral Declarations section of your class module, you create global
constants, global variables, and references to TOM objects.

What Kinds of
References Are
Required?

Your class code should declare references to any TOM objects under Gen
Declarations. For instance, it should create references to:

■ (required) The Service object that “owns” this class

■ (as needed) Any other Service this one uses

■ (as needed) Other types of TOM objects, such as DataDefs and Attrib

What Kinds of
Variables Are
Required?

Your Service should have the following global variables:

■ (recommended) A String for the name of your Service

■ (recommended) A Boolean that indicates whether or not full verificatio
is on

■ (as needed) Variables for Attributes of your Service or Attributes of
another Service that yours uses

What Kinds of
Constants Are
Required?

In theGeneral Declarations section of your class module, you should create
constants for the following in your Service:

■ (recommended) The name of your Service, SERVICE_NAME. (see
Creating a Class Module and Declaring Service Name, p. 2-10)

■ (recommended) Names for the Methods, Events, and Attributes of you
Service

■ (recommended) Names of any other Services yours uses

■ (recommended) Names for the Methods, Events, and Attributes of eac
Service you want to use within your Service

■ DataDefs of this Service or another Service yours uses

N OT E TOM Tip—Defining Constants Multiple Services Can Use

The Visual Basic project for a series of Services that would
belong to a single .DLL should use adef.bas file to define
global constants so that all those Services can access those
constants. Add your unique prefix to the name ofdef.bas to
identify the family of Services in that .DLL, such as
MYdef.bas.
2-12
Brooks Automation

Creating References, Variables, and ConstantsDeveloping Service Infrastructure

ach a

e

ds:
Creating References, Variables, and Constants

In your class module’sGeneral Declarations section, you create constants,
variables, and references your Service needs:

1. (recommended) Create a global string to contain the Service’s name:

Private SERVICE_NAME As String

2. Create a reference to the Service you are creating as atom.Service type
object:

Private m_oService As tom.Service

3. Create a reference to any other Service this Services uses and make e
tom.Service type object. For instance, to be able to work with the
SecsLoopbackDiagnosticandProtocolSECSServices, create references to
them:

Private m_oLoopback As tom.Service

Private m_oProtocolSECS As tom.Service

(Optional) You might also find it convenient to have constants for thos
Services:

Private Const SRV_LOOPBACK = "SecsLoopbackDiagnostic"

Private Const SRV_PROTOCOLSECS = "ProtocolSECS"

4. (Optional) You might need a Boolean variable for saving the
FullVerification argument later passed in by TOM indicating
whether or not full verification is on; to use it in more than one handler
method, you can create it as a global:

Private m_oFullVerfication As Boolean

5. (Optional) Create global constants for referring to your Service’s Metho

Private Const METH_METHOD1 = "Method 1"

Private Const METH_METHOD2 = "Method 2"

Private Const METH_METHOD3 = "Method 3"

Private Const EVENT_CONNECT = "Connect Event"

6. (optional) Create global constants for referring to your Service’s
DataDefs:

Private Const DD_DD1 = "DataDef1"

Private Const DD_CHILDA = "ChildDataDefA"

Private Const DD_CHILDB = "ChildDataDefB"

Private Const DD_DD2 = "DataDef2"

7. Create global variables for your Sevice’s Attributes or Attributes of
another Service that yours uses:

Private Const ATT_EVENT_ENABLED = "ToolEventEnable"
2-13
Service Developer’s Guide

Creating References, Variables, and Constants Developing Service Infrastructure

g

f a
8. (Optional) The sample Service creates constants for use in sequencin
Methods. You might find the need for such constants also:

Private Const CaseStep1 = 1

Private Const CaseStep2 = 2

Private Const CaseStep3 = 3

Private Const CaseEnd = 4

Fitting ServicesTogether in Visual Basic Project

The illustration below shows how multiple Services and the other pieces o
Visual Basic project fit together in a .DLL or .EXE. A series of related
Services might be in the same .DLL or .EXE file.

The .DLL or .EXE file contains a .clsfile for each Service you have written. It
also includes all the .bas files required:

■ Any def.bas files you need.

■ Smain.bas, which is required.

■ handler.bas, which contains the handler support routines.

Service 1 Service 2

Service 3

sample.cls
Handler.bas
def.bas
Smain.bas

.DLL

class
file

class
file

class file

or .EXE
2-14
Brooks Automation

Creating References, Variables, and ConstantsDeveloping Service Infrastructure

ces

in
The next illustration shows how the TOM core is involved in running your
Services. You use the Services in a TOM application.

1. When the application instantiates a Tool, it accesses the TOM Core
tomCtrl.

2. The TOM Core determines the structure of the TOM Tool—the Resour
and Services that make up that Tool—based on the information in the
database.

3. TOM creates a copy of the object hierarchy and puts it in memory.

4. If your application tries to run a Method of a Service the Tool uses, it
traverses the object hierarchy in memory and runs the Method.

5. TOM calls theOnExecute of that Service, one of the handler methods
each Service.

From there, the application proceeds. Steps 4 and 5 repeat every time the
application executes a Method in a Service.

TOM
Application

calls the
TOM Core

tomCtrl TOM Tool
Resource

ServiceA
Attribute
Attribute

ServiceB
Attribute
Attribute

TOM Core
tomCtrl

TOM Object Hierarchy

TOM
Database

2

3
4

5

1

Tool
Resource1

Resource2
ServiceB.dll

ServiceA.dll

MethodA
MethodB

Method1
Method2

Instantiate
Tool

Get Tool
Structure

Create object
hierarchyTraverse

hierarchy
and execute
method

Run the
OnExecute
of Method’s
Service

DLL
of TOM
Services

ServiceA
ServiceB
2-15
Service Developer’s Guide

Creating References, Variables, and Constants Developing Service Infrastructure
2-16
Brooks Automation

INFO

M

Writing Your Handler Methods 3

Introduction

Topics in This Chapter

This chapter covers how to develop the actual Service code. It shows
developing the handler methods TOM requires your Service to have. This
chapter refers to the template Service (a dummy Service) provided with TO
under\FASTech\TOM\Samples\Services\demoand the Tool that accompanies
it under\FASTech\TOM\Samples\Services\Drivers. The complete code for the
Service’s class is listed in Appendix A.

Writing Required Handler Methods That TOM Triggers, p. 3-2

Understanding the OnCreate Handler Method, p. 3-5

Writing the OnCreate Handler Method, p. 3-6

Defining Method Objects for Your Service in OnCreate, p. 3-9

Defining Event Objects for Your Service in OnCreate, p. 3-11

Writing the LetAttribute Handler Method, p. 3-14

Writing the GetAttribute Handler Method, p. 3-15

Writing the OnInitialize Handler Method, p. 3-16

Writing the OnExecute Handler Method, p. 3-20

Executing Existing Methods in OnExecute, p. 3-22

Writing the OnMethodCompleted Handler Method, p. 3-25

Writing the OnSubscribedEvent Handler Method, p. 3-30

Triggering Your Service Event, p. 3-31

Writing the OnVerify Handler Method, p. 3-33

Verifying a Service—The Nuts and Bolts, p. 3-36

Writing the Version Handler Method, p. 3-40

Writing the OnTerminate Handler Method, p. 3-41

Writing a Terminate Class Method, p. 3-41
3-1
Service Developer’s Guide

Writing Required Handler Methods That TOM Triggers Writing Your Handler Methods

 are
ct

ice.

u

ave

in
,

s

Writing Required Handler Methods That TOM Triggers

Now you are ready to start generating handler methods. Handler methods
those Visual Basic methods required in your Service code. They are distin
from TOM Methods (with a capital M) that your Services defines and/or
executes.

In a TOM Service you are required to include several handler methods:

The TOM control uses these handler methods when it executes your Serv

If your Service executes one or more Methods of another Service, it also
requires the following handler method:

■ OnMethodCompleted

If your Service has Attributes, you should also have two other handler
methods:

■ GetAttribute

■ LetAttribute

If your Service subscribes to Events in other Services, you need another
handler method :

■ OnSubscribedEvent

If your Service is among a series of Services for a particular Tool, and you
would like some actions to begin automatically when the Tool starts up, yo
should also have a handler method called:

■ OnStartup

If your Service needs a timer you can create it withsrvCreateTimer (a
handler support routine); when you use such a timer, your Service must h
another handler method called:

■ OnTimerEvent

When Does TOM
Execute Handler
Methods?

How does TOM work with the handler methods? When you create a tool (
TOM Explorer or another application) that your Service is associated with
TOM runs yourOnCreate andOnInitialize handler methods. TOM
retrieves attributes from the database (or the registry) after runningOnCreate
and before runningOnInitialize .

When all Services associated with the Tool have been initialized (TOM ha
executed theirOnCreate andOnInitialize handler methods), TOM runs

■ OnCreate

■ OnInitialize

■ OnExecute

■ OnVerify

■ OnTerminate

■ Version
3-2
Brooks Automation

Writing Required Handler Methods That TOM TriggersWriting Your Handler Methods

her
,
t.

of

 it,

he

 the

ent

t

en
this Service’sOnStartup handler method (if one exists). By having
OnStartup , a Service can automatically begin executing Methods of anot
Service rather than waiting for direction from a TOM application. However
OnStartup is not required and Brooks discourages indiscriminate use of i

When you (through, for example, TOM Explorer) try to execute a Method
your Service, TOM runs yourOnExecute handler method.

Your Service can make a copy of another Service’s Method and use it. In
TOM copying an object is referred to ascloning. If your Service clones a
Method of another Service (or one of its own Methods) and then executes
when the Method completes, TOM calls yourOnMethodCompleted .

If your Service has Attributes, when the application (TOM Explorer) reads t
Value property of an Attribute object, it runs yourGetAttribute handler
method. When the application (TOM Explorer) needs to assign a value to
Value property of an Attribute of your Service, it calls yourLetAttribute
handler method.

If another Service’s Event is triggered and you have subscribed to that Ev
in your Service, TOM calls yourOnSubscribedEvent handler method
when the Event triggers.

When you try to verify your Service, as you would in TOM Explorer by righ
clicking on the Service and selectingVerify from the pulldown menu that
appears, TOM runs theOnVerify handler method.

When you remove a Tool by going to theObject menu, right clicking on the
tool, and selectingRemove, TOM calls yourOnTerminate method. TOM
also callsOnTerminate when you exit TOM Explorer.

Order of TOM Calls
to Multiple
OnCreates and
OnInitializes

When TOM calls theOnCreate handler method for multiple Services, it calls
them by level, starting at level 0. TOM first callsOnCreate for each Service
at level 0, then level 1, then level2, and so on, through level 5. Within a giv
level, TOM does not callOnCreate in any particular order.

The same order applies toOnInitialize .

N OT E Minimize Actions in OnStartup and

Prominently Document Actions in OnStartup

In general, you should code your Services so that after
initialization, they take action when told to do so, rather than
automatically. Since actions set up inOnStartup occur
automatically after initialization, you should minimize use of
OnStartup andalways prominently document all actions
that occur there.
3-3
Service Developer’s Guide

Writing Required Handler Methods That TOM Triggers Writing Your Handler Methods

to

w

s of

ps

 the
For information on Service levels, refer to the STATIONworks Help file or
theSTATIONworks Tool Deployment Guide.

Relationship
between
OnExecute and
OnMethodCompleted

What is the purpose ofOnMethodCompleted ? In TOM whenever your
Service clones and executes a Method of another Service, it needs to kno
when the cloned Method completes (receive a notification).

When the cloned Method completes, TOM runs your Service’s
OnMethodCompleted . This means that every time your Service clones and
executes a Method object, TOM calls yourOnMethodCompleted afterwards.
So if your Service clones and executes several Methods objects, TOMcycles
throughOnMethodCompleted for each cloned Method.

This handler method is designed to work with Methods you clone and
execute. You should always clone a Method before executing it, regardles
where it is defined. The following illustration shows what happens when a
Method ofSrvc1 clones and executes several Methods ofSrvc2.

Terminating
Service Action

When you try to exit your Service code, TOM calls yourOnTerminate
handler method.

Required Class
Method

In addition to the handler methods, your Service should have a
Class_terminate method to terminate the class when the OLE server sto
running.

You see how to write this class method as well as the handler methods in
sections that follow.

Srvc1 Srvc2

clones/executes Meth1 of Srvc2

clones/executes Meth2 of Srvc2
OnMethodCompleted of Srvc1

OnMethodCompleted of Srvc1

Service
.DLLApplic.

completed Meth2
runs Meth2

runs Meth1
completed Meth1

srvComplete

MethodCompletion Notification

clones/executes
Meth1 of Srvc1
3-4
Brooks Automation

Understanding the OnCreate Handler MethodWriting Your Handler Methods

’s

s

o

en

in
Understanding the OnCreate Handler Method

TOM triggers theOnCreate handler method when an object of this Service
class is created.

Each time your program creates an instance of the object, after it execute
OnCreate , TOM defines Attributes for the object instance. When it defines
those Attributes, it gives them the values from the registry first. If there is n
value for that attribute in the registry, TOM retrieves it from the database.

Every Service must have anOnCreate handler method. So, when you load a
Tool, for every Resource of the Tool and every Service the tool uses, TOM
executes anOnCreate handler method. Since each Resource normally has
several Services, TOM usually executes severalOnCreate handler methods
for a single Resource, in random order. If your Service needs to work with
another Service, that Service’s object may not even have been created wh
your OnCreate handler method runs. So, the rule on working with other
Services inOnCreate is:

Do not unnecessarily postpone defining any objects you should generate
OnCreate . If an initialization doesnot require Attribute values from the
database or access to another Service, you should not postpone it.

N OT E Tip—Working with TOM Attributes

Since TOM defines Attributes after it runsOnCreate , you
should not attempt to work with Attributes in theOnCreate

handler method. Save those actions for afterOnCreate

completes and take them in theOnInitialize handler
method.

N OT E Tip—Working with Other Services

Since other Services may not yet exist when your Service
runs, do not take actions involving another Service in
OnCreate . Save those actions for theOnInitialize

handler method.
3-5
Service Developer’s Guide

Writing the OnCreate Handler Method Writing Your Handler Methods

ific
Writing the OnCreate Handler Method

In OnCreate , your Service should:

1. Receive a reference to your Service as an argument.

2. Save the reference to the Service.

3. Initialize any other data your Service requires.

4. (If required by your Service) Retrieve a reference to the Service Spec
area in the Dictionary.

5. (If required by your Service) Load DataDefs from the Service Specific
area into memory.

6. Create Methods for the Service.

7. Create Events for the Service.

The details on each step follow:

Pass Reference
to Service to
OnCreate

1. When you write theOnCreate handler method, you set it up to accept a
single argument that is the TOM Service passed to it by value:

Public Sub OnCreate(ByVal Service As tom.Service)

Save a Reference
to the Service
Object

2. TheOnCreate handler method should save a reference to the Service
object passed to it:

' Save Service reference

Set m_oService = Service

Initialize Other
Objects

3. If you want to initialize any other data your Service requires (except
Attributes), you should initialize it next.
3-6
Brooks Automation

Writing the OnCreate Handler MethodWriting Your Handler Methods

se,

the
Create Service
Specific Area and
DataDefs in
Dictionary

4. If you would like to retrieve the values of any DataDefs from the databa
you must have created of them into the Dictionary first. For more
information refer toCreating DataDefs, p. 4-10.

You can use TOM DB Editor or TOM Builder to create them. The
structure of the DataDefs used by the sample service appears in TOM
Builder as shown below:

Load DataDefs
from Service
Specific Area

You load DataDefs into memory inOnCreate using two TOM handler
support routines calledsrvServiceDataDef andsrvLoadDataDef .

1. You use thesrvServiceDataDef routine to retrieve a reference to the
Service Specific DataDef for your Service (whose name matches
your Service’sClassName property).

To create the Service Specific area for your Service, pass the routine
reference to your Service:

ServiceSpecificArea = srvServiceDataDef (m_oService)

Your Service then owns the tom.DataDef object that
ServiceSpecificArea references.
3-7
Service Developer’s Guide

Writing the OnCreate Handler Method Writing Your Handler Methods

.

Create Child
DataDefs in
Service Specific
Area

2. After you callsrvServiceDataDef , you can then load child DataDefs
that are in theService Specific area into memory. You do that using
srvLoadDataDef , which returns a tom.DataDef object.

ThesrvLoadDataDef routine takes three arguments:

◆ Service—Reference to the Service being developed.
◆ Parent—Parent DataDef of the collection of DataDefs being loaded
◆ DataDefName—String containing the name of the DataDef to load.

Load DataDefs calledDataDef1 andDataDef2 by passing the
ServiceSpecificArea reference as the parent:

Set DataDef1 = srvLoadDataDef(m_oService,_
srvServiceDataDef(m_oService), "DataDef1")

Set DataDef2 = srvLoadDataDef(m_oService,_
srvServiceDataDef(m_oService), "DataDef2")

Then create child DataDefs ofDataDef1 by passingDataDef1 as the
parent:

Set ChildDataDefA = srvLoadDataDef(m_oService,_
DataDef1, "ChildDataDefA")

Set ChildDataDefB = srvLoadDataDef(m_oService,_
DataDef1, "ChildDataDefB")

N OT E Tip—References to DataDefs

Do you need references to these DataDefs so that you can
access them elsewhere in the code? Not always. If you later
associate the DataDefs with the Methods that use them (in
TOM Builder or the TOM DB Editor), when you clone the
Method, TOM creates not only a copy of the Method, but a
copy of its DataDefs as well. Under these conditions, you
need only the reference to the clone of the Method.
3-8
Brooks Automation

Defining Method Objects for Your Service in OnCreateWriting Your Handler Methods

e a

e

s

 not

e the
Defining Method Objects for Your Service in OnCreate

Another task you carry out inOnCreate is defining methods that you want
for your Service. Methods are commands your Service carries out. You us
handler support routine calledsrvDefineMethod to create a method. The
routine returns a tom.Method object.

ThesrvDefineMethod routine takes three arguments:

■ Service—Name of the Service being developed.
■ MethodName—String containing the name of the Method (this is the

name that appears in TOM Explorer).
■ Description—String containing a description of the Method.

The routine returns a reference to the new Method object.

1. Create theMethod 1 method and include a description for it:

' Define Methods

Set Method1 = srvDefineMethod(m_oService, METH_METHOD1, "A
Sample Method")

The second argument is the name of the Method as it later appears in
TOM Explorer (contained in the constant here). The third argument, th
description, becomes the Method’sDescription property setting.

2. To create a DataItem for the Method, you use thesrvAddDataItem
routine. ThesrvAddDataItem routine, which returns a tom.DataItem
object, takes four arguments:

◆ Service—Name of the Service being developed.

◆ Parent—DataItem that should be the parent of your DataItem (your
will be its child).

◆ DataDef—A reference to the DataDef that defines the type of
DataItem you are creating.

◆ OptionalChildren—True if you want the new DataItem to be based
on the definition of a child of the DataDef,False otherwise.

The routine returns a reference to the new DataItem object. If you are
interested in that returned value, you can add the data item without
putting parentheses around the arguments; then, later you can retriev
DataItem using theMethodName.Inputs.Item(number) technique.

You set the DataItems using a DataDef you created earlier:

Set DataItemInput = srvAddDataItem(m_oService,_
Method1.Inputs, ServiceSpecificDataDef.Item("DataDef1"))
3-9
Service Developer’s Guide

Defining Method Objects for Your Service in OnCreate Writing Your Handler Methods
Later, you see these DataItems underMethods for the Service in TOM
Explorer:

Now you are ready to define Events for the Service.

N OT E TOM Tip—Generating Method Input Items

To define an input item that uses information from Service
Attributes, you must wait until you have Attributes, which
TOM createsafter it runsOnCreate andbefore it runs
OnInitialize . Since you can’t work with Attributes until
they exist, you shouldnot generate that input item in
OnCreate , but instead inOnInitialize .

Although you can create the “empty shells” (DataDefs) in
OnCreate , you need to delay creating any actual DataItems
until OnInitialize , again, because you have no Attributes
until afterOnCreate runs.
3-10
Brooks Automation

Defining Event Objects for Your Service in OnCreateWriting Your Handler Methods

urs
s

h a

t in

rs

e

You

tput
Defining Event Objects for Your Service in OnCreate

An application that uses your Service might wait until a Service Event occ
before taking certain actions. How does an Event occur? Your Service fire
the Event in response to an equipment initiated event (called acollection event
in this manual). For instance, if you were establishing communications wit
piece of equipment, your Service might set up communication parameters
using a Method, but it would have an Event for TOM to execute when the
communication status of the equipment changes. A Service fires the even
response to the equipment. Only a Service can fire TOM Events.

In the sample Service presented hereToolEvent is a Service Event. For your
Service to fire Events, it must first create Event objects.

You define Event objects for your Service similarly to the way you defined
methods, only you usesrvDefineEvent . ThesrvDefineEvent routine
takes three arguments:

■ Service—Name of the Service being developed.
■ EventName—String containing the name of the Event (this name appea

in TOM Explorer).
■ Description—String containing a description of the Event.

The routine returns a reference to the new Event object.

1. Create theToolEvent Event and include a description for it:

Set ToolEvent = srvDefineEvent(m_oService, "Tool Event",_
"A sample event")

The second argument is the name of the Event. The third argument, th
description, becomes the Event’sDescription property setting.

2. Create a DataItem for each Output that should result from the Event.
create the DataItem using thesrvAddDataItem routine. You pass the
routine the reference to the Service, the parent of the new Output
(DataItem) you are creating, and the DataDef that defines the new Ou
(DataItem):

Set DataItemOutput = srvAddDataItem(m_oService,_
ToolEvent.Outputs, ServiceSpecificDataDef.Item("DataDef2"))
3-11
Service Developer’s Guide

Defining Event Objects for Your Service in OnCreate Writing Your Handler Methods
Later, you see these DataItems underEvents for the Service in TOM
Explorer.

Restrictions in
OnCreate

There are some actions you should never take inOnCreate :

After you have carried out the required tasks in yourOnCreate handler
method, you are ready to proceed to the next handler method.

Code of Sample
OnCreate

The full code ofOnCreate appears below:

N OT E Tip—Actions Not Allowed in OnCreate

■ If you raise an error inOnCreate , TOM terminates
your Service object.

■ Do not execute methods insideOnCreate . You create
them here, but you execute them in another handler
method.

Public Sub OnCreate(ByVal Service As tom.Service)

Dim ServiceSpecificDataDef As tom.DataDef

Dim ToolEvent As tom.Event

Dim DataItemOutput As tom.DataItem

Dim DataItemInput As tom.DataItem

Dim DataDef1 As tom.DataDef

Dim DataDef2 As tom.DataDef

Dim ChildDataDefA As tom.DataDef

Dim ChildDataDefB As tom.DataDef

Dim Method1 As tom.Method

Dim Method2 As tom.Method

Dim Method3 As tom.Method
3-12
Brooks Automation

Defining Event Objects for Your Service in OnCreateWriting Your Handler Methods
' Save Service reference

Set m_oService = Service

Debug.Print "Entering OnCreate"

' Retrieve your Sevice Specific area in the Dictionary

Set ServiceSpecificDataDef = srvServiceDataDef(m_oService)

' Here is an how to load child DataDefs into your Service Specific area

Set DataDef1 = srvLoadDataDef(m_oService, srvServiceDataDef(m_oService),_
"DataDef1")

Set ChildDataDefA = srvLoadDataDef(m_oService, DataDef1, "ChildDataDefA")

Set ChildDataDefB = srvLoadDataDef(m_oService, DataDef1, "ChildDataDefB")

Set DataDef2 = srvLoadDataDef(m_oService, srvServiceDataDef(m_oService),_
"DataDef2")

' Here is how to define a Method object

' This method is Method1

Set Method1 = srvDefineMethod(m_oService, METH_METHOD1, "A Sample Method")

Set DataItemInput = srvAddDataItem(m_oService, Method1.Inputs,_
ServiceSpecificDataDef.Item("DataDef1"))

' Here is a second Method object

' This method is Method2

Set Method2 = srvDefineMethod(m_oService, METH_METHOD2, "A Second Sample Met h

' Here is a third Method object

' This method is Method3

Set Method3 = srvDefineMethod(m_oService, METH_METHOD3, "A Third Sample Meth o

' Here is how to define Event objects

Set ToolEvent = srvDefineEvent(m_oService, EVENT_CONNECT, "A sample event")

Set DataItemOutput = srvAddDataItem(m_oService, ToolEvent.Outputs, _
ServiceSpecificDataDef.Item("DataDef2"))

Debug.Print "Leaving OnCreate"

End Sub
3-13
Service Developer’s Guide

Writing the LetAttribute Handler Method Writing Your Handler Methods

s

n

an

ler

 of
ld

vel

e,

bout
Writing the LetAttribute Handler Method

TheLetAttribute handler method should set any Attributes inside the
Service. TOM calls this handler method afterOnCreate and before
OnInitialize , but this handler method is required only if your Service ha
Attributes.

TOM also callsLetAttribute whenever your Service assigns a value to a
Attribute object by setting itsValue property.

This handler method receives an Attribute name (in a string, of course) and
Attribute value (which could come from a lower level Service in TOM):

Public Sub LetAttribute(ByVal AttributeName As String,_
ByVal NewValue As Variant)

ThenLetAttribute might test to see if the Attribute name passed to it
(AttributeName) matches an expected name. If it finds a match, the hand
method can then set the Service’s corresponding Attribute variable to the
value passed toLetAttribute in NewValue , as shown below:

Select Case AttributeName

Case ATT_EVENT_ENABLED

Att_ToolEventEnable = NewValue

Case Else

Debug.Print “Cannot set ", AttributeName

Debug.Print “Leaving GetAttribute”

End Select

TheNewValue is As Variant because, since it often comes from the
equipment (via a lower level Service), you can’t be sure whether the value
the Attribute is a string or a number. If you want to know its type, you shou
check the type in your code. If you want to restrict theNewValue to not
simply numeric, but a specific range of numbers, you must check for that le
of compliance in your code.

If the NewValue passed does not fit the requirements for the Attribute valu
you can have the code do one of the following:

■ Set the value of the Attribute to a default value
■ Leave the value at its previous setting
■ Raise an error

Note that you cannot pass theNewValue by reference!

Raise an Error
in LetAttribute

You can raise an error insideLetAttribute . Raising an error does not
change the value of the Attributes that have been set. You find out more a
raising an error inRaising an Error, p. 4-6.
3-14
Brooks Automation

Writing the GetAttribute Handler MethodWriting Your Handler Methods

by

 of
Writing the GetAttribute Handler Method

GetAttribute retrieves the Attribute setting stored inside the Service. If
Your Service has Attributes, you must have aGetAttribute handler
method. As long as you have aGetAttribute handler method, another
Service can also request an Attribute value from your Service.

You should create this handler method as a function that takes a string
argument and returns a variant:

Public Function GetAttribute(ByVal AttName As String) _
As Variant

Then haveGetAttribute use the Attribute name TOM passes it and
compare that name to the various possible Attribute names actually used
the Service. If the name of the Attribute you pass it matches one of the
Attributes you were expecting, you then have the function return the value
that Attribute.

For instance,GetAttribute might contain aCase statement like the one
shown below:

Public Function GetAttribute(ByVal AttName As String) _
As Variant

Select Case AttributeName

Case ATT_EVENT_ENABLED

GetAttribute = Att_ToolEventEnable.Value

Case Else

Debug.Print “No such attribute exists ”, AttributeName

End Select

End Function

TOM returns the value thatGetAttribute returns to the caller.
3-15
Service Developer’s Guide

Writing the OnInitialize Handler Method Writing Your Handler Methods

et

ou

e

re

r

is

ds
e

Writing the OnInitialize Handler Method

TheOnInitialize handler method should complete set up of input items
that require Attributes from the database or from other Services. TOM
executes this handler method after it has executedOnCreate for each Service
associated with the tool and has generated Attributes.

This handler method should :

1. Perform any initializations that must occur after Attributes have been s
and/or other Services have started.

2. Check that no incompatible Services are running.

3. Verify that all required Services are present.

4. Subscribe to Events of other Services that your Service requires.

5. Set whether or not an application using your Service should receive
notification on Events your Service subscribes to.

6. Generate References to other Services you want to work with.

7. Generate local storage for DataDefs your Service needs.

Create OnInitialize Start by declaringOnInitialize as public. It has no arguments:

Public Sub OnInitialize()

Perform Any
Initializations That
Require Attributes

Now that TOM has retrieved the Attributes from the registry or database, y
can initialize any values that depend on those Attribute settings.

Since TOM Services can never change values in the database, you set th
Attributes to their initial values using TOM Builder or TOM DB Editor. For
more information refer toCreating Attributes, p. 4-17.

Check That No
Incompatible
Services Are
Running

In OnInitialize , you should always check to be sure that no Services a
running that are incompatible with yours. For instance, if you are writing a
specialCustomAlarms Service, and it conflicts with the standardGemAlarms
Service, you should not have the standard Service running.

To have TOM check for incompatible Services, call thesrvIncompatible-
Service handler support routine. You pass the routine a reference to you
Service, then the name of the Service that is not compatible with it:

srvIncompatibleService m_oService, ServiceName

(In the sample service, there are no incompatible Services specified, so th
line of code is there, but commented out.)

You should call the routine once for each incompatible Service. If TOM fin
an incompatible Service is running, it raises an error and TOM handles th
3-16
Brooks Automation

Writing the OnInitialize Handler MethodWriting Your Handler Methods

ur

f

ose

rvice
nd
 to

call-
r-
the
error by having the initialization of the tool fail. You wouldn’t want the tool to
be running if an incompatible Service were running!

If your handler method has anOn Error Goto statement, the line the code
goes to should use thesrvExtendError routine to extend the error. (See
Deciding to Raise, Extend, or Trigger an Error, p. 4-2.)

Verify That All
Required Services
Are Present

Your OnInitialize handler method should always verify that all required
Services are running. You call thesrvRequiredService handler support
routine to verify required Services. You pass the routine a reference to yo
Service, then the name of the other Service that is required.

You should call the routine once for each required Service. For instance, i
ProtocolSECSandSecsLoopbackDiagnosticare required, you would enter the
routine once for each:

srvRequiredService m_oService, SRV_LOOPBACK

srvRequiredService m_oService, SRV_PROTOCOLSECS

If TOM finds a required Service is missing, it raises an error and TOM
handles the error by having the initialization of the tool fail. You wouldn’t
want the tool to be running if any required Service is missing!

If your handler method has anOn Error Goto statement, the line the code
goes to should use thesrvExtendError routine to extend the error. (See
Deciding to Raise, Extend, or Trigger an Error, p. 4-2.)

Generate
References to
Other Services
That Work with
Yours

To actually work with the required Services, you generate references to th
Services using thesrvGetService handler support routine:

Set m_oLoopback = srvGetService(m_oService, SRV_LOOPBACK)

Set m_oProtocolSECS = srvGetService(m_oService,_
SRV_PROTOCOLSECS)

Subscribe
to Events Your
Service Requires

Your Service may need to take action when Events occur that another Se
sets into motion. To ensure that your Service knows about those Events a
can respond when they occur, you start by having your Service subscribe
those Events. You carry out the subscription in two steps:

1. You can have your Service subscribe to the other Service’s events by
ing thesrvSubscribeEvent handler support routine. You pass it a refe
ence to your Service, the name of the Service owning the Event, and
Event you want to subscribe to:

srvSubscribeEvent m_oService, SRV_PROTOCOLSECS, "Connect"
3-17
Service Developer’s Guide

Writing the OnInitialize Handler Method Writing Your Handler Methods

.

vent

to,
2. Write another handler method for your Service called
OnSubscribedEvent , which you learn more about later in this chapter

Set Whether
or Not TOM App
Receives
Notification
of Events Your
Subscribed To

Once your Service has subscribed to another Service’s Event, when the E
occurs, if your Service is handling that Event, you may not want the TOM
application to take action. In such a situation, you would not want to notify
the TOM application that is running your Service.

To cancel notification to a TOM application about an event you subscribe
you can callsrvSetEventNotification . You pass this routine several
arguments:

■ A reference to your Service
■ The name of the Service whose event you’ve subscribed to
■ The name of the event
■ The value for theNotify property, eithertomNotifyNever ,

tomNotifyError (sends notification when an error occurs), or
tomNotifyAlways.

To cancel notifications to a TOM application when theConnect Event of
ProtocolSECS occurs, you would pass the routinetomNotifyNever .

srvSetEventNotification m_oService, SRV_PROTOCOLSECS,_
"Connect", tomNotifyNever

In this case, you would want to notify the TOM application of the Event. To
ensure that the application using your Service (such as TOM Explorer)
receives notification, pass the routinetomNotifyAlways :

srvSetEventNotification m_oService, SRV_PROTOCOLSECS,_
"Connect", tomNotifyAlways

N OT E Tip — Subscribing to Another Service’s Events

If you call srvSubscribeEvent in your Service, when the
Event occurs, in addition to sending news of the Event to the
TOM applications (such as TOM Explorer, which receives
notifications in its Event log), TOM triggers the
OnSubscribedEvent handler method in your Service.

Once your Service callssrvSubscribeEvent ,
OnSubscribedEvent becomes a required handler method
for your Service.

N OT E When a Service Event occurs, TOM applications can receive
notifications. For details, refer to theTool Object Model
(TOM) Application Developer’s Guide.
3-18
Brooks Automation

Writing the OnInitialize Handler MethodWriting Your Handler Methods
Restrictions in
OnInitialize

There are some actions you should never take inOnInitialize :

Code of Sample
OnInitialize

The full code ofOnInitialize appears below:

N OT E Tip — Actions Not Allowed in OnInitialize

■ When you raise an error inOnInitialize , TOM
terminates your Service object. Do not raise an error in
OnInitialize unless you want to terminate the
Service.

■ Do not execute methods insideOnInitialize .

Public Sub OnInitialize()

Dim localAttribute As String

Debug.Print "Entering OnInitialize"

' Perform initialization that must happen after Attributes are

' set and/or other services are started.

' Here is how to check to be sure a required service is present

' If the service is present, it is registered in the NT registry

srvRequiredService m_oService, SRV_LOOPBACK

srvRequiredService m_oService, SRV_PROTOCOLSECS

' Generate References to other services this service works with

Set m_oLoopback = srvGetService(m_oService, SRV_LOOPBACK)

Set m_oProtocolSECS = srvGetService(m_oService, SRV_PROTOCOLSECS)

' Check that no incompatible services are running

' srvIncompatibleService m_oService, ANYSERVICECONSTANT

' Subscribe to events your service requires

srvSubscribeEvent m_oService, SRV_PROTOCOLSECS, "Connect"

' Set whether or not other services require notification

' Pass this handler support routine tomNotifyAlways or tomNotifyNever

srvSetEventNotification m_oService, SRV_PROTOCOLSECS, "Connect", tomNotifyAl w

'Make use of an attribute in OnInitialize rather than in OnCreate

Debug.Print "Leaving OnInitialize"

End Sub
3-19
Service Developer’s Guide

Writing the OnExecute Handler Method Writing Your Handler Methods

has

e

 on
e.
Writing the OnExecute Handler Method

TheOnExecute handler method triggers when TOM executes a Method
object of this Service. You must have this handler method if your Service
any Method objects.

For every Method you defined inOnCreate , you need to write the Visual
Basic code that implements the Method actions. You write that code in
OnExecute .

Accept a TOM
Method as an
Argument

Start by declaringOnExecute as public and setting it up to accept a TOM
Method object passed to it by value:

Public Sub OnExecute(ByVal ExecuteMethod As tom.Method)

Trap Any Errors Before taking any other action, you should direct the handler method to th
ErrorTrap label when an error occurs:

On Error GoTo ErrorTrap

For further information on how to deal with errors, refer toDeciding to Raise,
Extend, or Trigger an Error, p. 4-2.

Determine Method
to Execute

Remember that TOM runsOnExecute each time it needs to execute a
Method of your Service. So, each time TOM runsOnExecute , it starts at the
beginning of the handler method again and must, based on the existing
conditions at that time (such as variables you have set in the Service or
Properties of the Method), execute the appropriate Method. In the sample
Service, when TOM runsOnExecute , one of the three Methods can be the
Method to execute:

■ Method 1

■ Method 2

■ Method 3

A Case statement can determine the Method that the object model should
execute for the particular run ofOnExecute by checking theName property
of the Method passed to the routine. Which Method was passed depends
what the application or higher level Service is trying to do with your Servic

C A U T I O N
Since Methods can execute concurrently, do not use global variables to maintain
state information.

Never use theTag property of the Method passed toOnExecute in the code inside
theOnExecute . TheTag property is reserved for the calling application’s use.
3-20
Brooks Automation

Writing the OnExecute Handler MethodWriting Your Handler Methods

ting
e

od,
Code Method
Action

In the sample Service, the Methods do not take any action other than prin
to the Debug window. You need to determine the actions your methods ar
going to take and code that action. You would fit the code inside theCase
statement, as in the following example:

Select Case ExecuteMethod.Name

Case METH_METHOD1

Debug.Print "Method 1 Executing"

Debug.Print " ChildDataDefA: " & _
ExecuteMethod.Inputs.Item("DataDef1").Item_
("ChildDataDefA").Value

Debug.Print " ChildDataDefB: " &_
ExecuteMethod.Inputs.Item("DataDef1").Item_
("ChildDataDefB").Value

srvCompleted ExecuteMethod

Case METH_METHOD2

Debug.Print "Method 2 Executing"

srvCompleted ExecuteMethod

Case METH_METHOD3

Debug.Print "Method 3 Executing"

srvCompleted ExecuteMethod

End Select

Handle Any Errors You should always have an error trap set up inOnExecute to handle any
errors that arise. In theErrorTrap section, in addition to any error handling
required for your Service, if you created a new object in this handler meth
you should always include the exact code that follows, only you should
substitute the appropriate variable forExecuteMethod :

ErrorTrap:

Dim ErrorState As t_ErrorState

srvSaveErrorState ErrorState

‘insert custom error handling code here

Set ExecuteMethod = Nothing

srvRestoreErrorState ErrorState

srvExtendError "OnExecute"

For details on how this code handles the error, refer toExtending an Error,
p. 4-3.

Called in OnExecute
only if all your

custom method
action occurs here—
because the method

does not execute
another Service’s

Methods.
3-21
Service Developer’s Guide

Executing Existing Methods in OnExecute Writing Your Handler Methods

ce

in
its
ion

e, a
Executing Existing Methods in OnExecute

Let’s suppose that insideMethod 1 you want to run a Method from another
Service. You would take the following actions:

1. Clone the Method

2. Set any Inputs of the Method

3. Execute the Method withsrvExecute

Clone a Method To run a Method from another Service, you clone the Method and store a
reference to the clone locally in a variable. You clone it using
srvCloneMethod . To use this routine, you pass it a reference to the Servi
that owns the Method to clone and the name of the particular Method. For
instance, to execute theTest Method from theSecsLoopbackDiagnostic
Service:

Set MethodToExec = srvCloneMethod(m_oLoopback, "Test")

Once you have cloned the Method, you have not only a copy of the Method
memory, but copies of the associated Inputs and Outputs of the Method—
DataDefs. So, now you can set the cloned Method’s Inputs using informat
from Attributes or other DataDefs:

MethodToExec.Inputs.Item("ABS").Value =_
ExecuteMethod.Inputs.Item("DataDef1").Item_
("ChildDataDefA").Value

Execute the
Cloned Method

After you clone a Method, you execute it using thesrvExecute handler
support routine. You pass the routine a reference to the Method to execut
reference to your Service, and a reference to the invoking Method, if
applicable. If you haveMethod 1 execute theTest Method of
SecsLoopbackDiagnostic, theTest Method is the one being executed and
Method 1 is the invoking Method.

To keep the code readable, since theExecuteMethod (in this caseMethod
1) is going to invoke another Method, let’s store it inInvokingMethod:

Set InvokingMethod = ExecuteMethod

Now that theTest Method is inMethodToExecute andMethod 1 is in
InvokingMethod , here is the call tosrvExecute :

srvExecute MethodToExec, m_oService, InvokingMethod

If no other Method is invoking this one, you pass it the Method
to execute as the invoking Method, too.

The invoking method is the one returned toOnMethodCompleted later.
3-22
Brooks Automation

Executing Existing Methods in OnExecuteWriting Your Handler Methods

to

d
ice

hod

ss

the

ng
When the method completes, the Service throws program control into
OnMethodCompleted and you take all subsequent action there. Let’s jump
that handler method (next section) and see how it should complete the
Methods.

Restrictions in
OnExecute

There are some actions you should never take inOnExecute , delineated
below:

N OT E Tip—Always Clone Method before Executing

Always clone a Method before executing it, even if it is a Metho
in your own Service. This action ensures that, since each Serv
has its own copy, no other Service can execute the same Met
object while your Service is executing it.

Being able to clone Methods of other Services gives you acce
to the Methods of all existing Services associated with the
Resource. Once you have a clone of a Method, you can alter
clone’s DataDefs.

Once you execute the Method clone, TOM Core keeps a
reference to it as long as it’s executing. Once it finishes executi
and TOM passes the clone toOnMethodCompleted , it is up to
you to save a reference to the clone or dispose of it.

N OT E Tip—Actions Not Allowed in OnExecute

■ Although you must call thesrvCompleted handler support
routine when you have finished processing eachMethod
object, you do not usually call it inOnExecute . You usually
call it in OnMethodCompleted , when the Method you have
called has completed. If you do not callsrvCompleted , the
Method hangs and TOM does not send a completion
notification to the invoking Method.

◆ For synchronous operations, you usually call
srvCompleted from OnExecute .

◆ For asynchronous operations, you usually call
srvCompleted from OnMethodCompleted .

■ Since TOM could call yourOnExecute again while you are
still processing a previous call ofOnExecute , do not create
a global reference or global variable (by creating it in
General Declarations), then expect to use that
reference or variable in theOnMethodCompleted routine.
The reference or variable could be overwritten by the new
call toOnExecute (and thus invalidated) before TOM calls
OnMethodCompleted .
3-23
Service Developer’s Guide

Executing Existing Methods in OnExecute Writing Your Handler Methods
Code of Sample
OnExecute

The full code ofOnExecute from the sample service showsMethod 2
cloning and executingMethod 3 :

Public Sub OnExecute(ByVal ExecuteMethod As tom.Method)

Dim MethodToExec As tom.Method

Dim InvokingMethod As tom.Method

Debug.Print "Entering OnExecute"

On Error GoTo ErrorTrap

Select Case ExecuteMethod.Name

Case METH_METHOD1

Debug.Print "Method 1 Executing"

Debug.Print " ChildDataDefA: " & ExecuteMethod.Inputs.Item("DataDef1"). _
Item("ChildDataDefA").Value

Debug.Print " ChildDataDefB: " & ExecuteMethod.Inputs.Item("DataDef1")
Item("ChildDataDefB").Value

Set MethodToExec = srvCloneMethod(m_oLoopback, "Test")

MethodToExec.Inputs.Item("ABS").Value =_
ExecuteMethod.Inputs.Item("DataDef1").Item("ChildDataDefA").Value

Set InvokingMethod = ExecuteMethod

srvExecute MethodToExec, m_oService, InvokingMethod

Case METH_METHOD2

Debug.Print "Method 2 Executing"

Set MethodToExec = srvCloneMethod(m_oService, METH_METHOD3)

Set InvokingMethod = ExecuteMethod

srvExecute MethodToExec, m_oService, InvokingMethod

srvCompleted ExecuteMethod

Case METH_METHOD3

Debug.Print "Method 3 Executing"

srvCompleted ExecuteMethod

End Select

Debug.Print "Leaving OnExecute"

Exit Sub

ErrorTrap

‘ Standard ErrorTrap code goes here

End Sub
3-24
Brooks Automation

Writing the OnMethodCompleted Handler MethodWriting Your Handler Methods

t

ling

rst
Writing the OnMethodCompleted Handler Method

TheOnMethodCompleted handler method triggers when any Service
method executed withsrvExecute finishes executing.

Every TOM method you invoke withsrvExecute (in OnExecute), you
must also have completion instructions inOnMethodCompleted .

For every time a calling Service or application invokes one of your Service
methods usingsrvExecute , your Service must eventually call
srvCompleted . If for some reason, you take an exit path out of a routine,
such as by raising an error, TOM callssrvCompleted for you.

Steps you should take inOnMethodCompleted are:

1. Determine whether you are completingOnVerify or another Method and
branch to separate actions for these two major options.

Inside the branch that responds to an executed Method:

2. Determine whether or not errors have occurred and handle them.

3. Determine Method that is completing.

4. If executing several Methods in sequence, clone and execute the nex
Method in the sequence.

5. Fill in values for any DataItems in the invoking Method’s Outputs
collection.

6. If all required Methods have been executed, complete the action by cal
srvCompleted on the invoking method.

Accept Completed
Method and
Invoking Method
as Arguments

Let’s start by declaringOnMethodCompleted as public and setting it up to
accept the name of two TOM methods passed to it by value, the first the
method that was executing and the second the method that invoked the fi
one:

Public Sub OnMethodCompleted(ByVal CompletedMethod As_
tom.Method, ByVal InvokingMethod As tom.Method)

You are required to have this handler method take these two arguments.

The invoking method is always the same invoking Method you passed to
srvExecute , unless you did not pass it an invoking Method. If you did not
pass an invoking Method tosrvExecute , then that argument became
Nothing by default; your Service then passedNothing as the argument to
OnMethodCompleted .
3-25
Service Developer’s Guide

Writing the OnMethodCompleted Handler Method Writing Your Handler Methods

e

es

te
For

a

Determine the
Method Being
Completed and
Set Up Major Code
Branches

When you enterOnMethodCompleted , the handler method must determine
why you are here.

Which Service method is being completed? It can be any Method you hav
cloned/executed either inOnExecute or, to verify it, in theOnVerify
handler method. Those two possibilities should form the two major branch
of code in this handler method.

Set Up Major Code Branches

You must always beginOnMethodCompleted by determining which path
lead to it:

■ OnVerify

■ OnExecute

If OnVerify lead toOnMethodCompleted , then the invoking method is
equal toNothing . So you can check the value of the invoking method to
determine you should take theOnVerify completion path. Otherwise, you
always take the other Method completion path:

If InvokingMethod Is Nothing Then

' Verification path

srvCompleted Method

lVerify (Method.Tag)

Else

' Second layer of Service method tasks

lCompleted CompletedMethod, InvokingMethod

End If

It is best if you set up these major branches and have them each call priva
functions to carry out the details of the verification and completion paths.
instance, in the verification path, you execute firstsrvCompleted (a handler
support routine), then the private functionlVerify .

What doessrvCompleted do? It tells TOM the Method object has finished
executing. If you do not runsrvCompleted , and thereby inform TOM the
method is finished, the Method never completes and TOM does not send
completion notification to the invoking Method.

N OT E Tip—Calling srvCompleted

For every time another Service or an application invokes one
of your Service methods usingsrvExecute , your Service
must eventually callsrvCompleted . If for some reason,
you take an exit path out of a routine, such as by raising an
error, TOM carries out thesrvCompleted for you.
3-26
Brooks Automation

Writing the OnMethodCompleted Handler MethodWriting Your Handler Methods

od

vice.
 you

 to
not

e is
In the alternative path, you execute the private function calledlCompleted .
Eventually this private function callssrvCompleted for all methods that
complete.

Let’s focus on the completion of Service methods other thanOnVerify . (You
see howOnVerify works later underWriting the OnVerify Handler Method,
p. 3-33.)

Create Branch
to Complete the
Method Action

The lCompleted private function should check to see which Service meth
executed last and determine which Service method to execute next.

Using this approach is one technique for cycling throughOnExecute , then
OnMethodCompleted , and always knowing where in its sequence the
process of setting up events is.

Let’s see how this private function should be constructed.

Accept Completed
Method and
Invoking Method
as Arguments

This method should always be private and take the same arguments that
OnMethodCompleted takes, the method being executed and the invoking
method:

Private Sub lCompleted(ByVal CompletedMethod As tom.Method, _
ByVal InvokingMethod As tom.Method)

The Method being executed can be a method you clone from another Ser
Under those conditions, the invoking method would be one in the Service
are writing.

Determine
Whether or Not
Errors Have
Occurred

Before you proceed, you should establish that no errors have occurred up
this point in the process. So, you can start by checking to see whether or
theError.ErrorCode Property of the Method is zero. If it isnot zero, an
error has occurred. Under those conditions, the first action you should tak
to callsrvCompleted on the invoking Method:

If (CompletedMethod.Error.ErrorCode <> 0) Then

srvCompleted InvokingMethod, FailedMethod:=CompletedMethod

FinishedSteps = False

Debug.Print "Method Failed: ", InvokingMethod.Name

Else

...

End If

For more information on how to deal with errors, refer toDeciding to Raise,
Extend, or Trigger an Error, p. 4-2.
3-27
Service Developer’s Guide

Writing the OnMethodCompleted Handler Method Writing Your Handler Methods

hich

ant

 calls

all
Use Name
Property to Branch

Based on the setting of theName property of the method, you can branch to
the various possible actions. For instance, if your Service invoked not only
Test , but its ownMethod 3 Method, then you would have each of them as
possible Methods being completed:

Select Case CompletedMethod.Name

Case "Test"

...

Case “Method 3”

...

End Select

Determine the
Method That Is
Completing and
Prepare to
Proceed

Inside each case, you check to see what theCompletedMethod.Name is set
to—that should be the name of the Method being completed. Based on w
Method that is, you can prepare to proceed to the next action.

The sequence of execution for the Methods depends on your goal. If you w
to execute the Methods in a particular sequence, as part of the action in
OnMethodCompleted , you might want to clone the Method that should
execute next.

You can then choose to execute another Method usingsrvExecute . After
your code callssrvExecute , TOM throws program control into
OnMethodCompleted again, so the action starts at the top of this handler
method. The handler method determines that a method has executed and
lComplete .

After you have taken any such “end actions” for the Method, you should c
srvCompleted on the invoking Method:

Select Case CompletedMethod.Name

Case "Test"

Debug.Print "Completing Test"

srvCompleted InvokingMethod

Case "Method 3"

Debug.Print "Completing Method 3"

srvCompleted InvokingMethod

End Select
3-28
Brooks Automation

Writing the OnMethodCompleted Handler MethodWriting Your Handler Methods
Code of Sample
OnMethodCompleted

The full code of the sampleOnMethodCompleted routine follows:

Code of Sample
lCompleted

The full code of the samplelCompleted routine follows:

Public Sub OnMethodCompleted(ByVal CompletedMethod As tom.Method,_
ByVal InvokingMethod As tom.Method)

Debug.Print "Entering OnMethodCompleted", CompletedMethod.Name

If InvokingMethod Is Nothing Then

' Do Verification

lVerify CompletedMethod.Tag

Else

' Take actions that should occur after method completes

lCompleted CompletedMethod, InvokingMethod

End If

Debug.Print "Leaving OnMethodCompleted"

End Sub

Private Sub lCompleted(ByVal CompletedMethod As tom.Method,_
ByVal InvokingMethod As tom.Method)

Dim FinishedSteps As Boolean

Dim ExecuteMethod As tom.Method

If (CompletedMethod.Error.ErrorCode <> 0) Then

srvCompleted InvokingMethod, FailedMethod:=CompletedMethod

FinishedSteps = False

Debug.Print "Method Failed: ", InvokingMethod.Name

Else

Select Case CompletedMethod.Name

Case "Test"

Debug.Print "Completing Test"

srvCompleted InvokingMethod

Case "Method 3"

Debug.Print "Completing Method 3"

srvCompleted InvokingMethod

End Select

End If

End Sub
3-29
Service Developer’s Guide

Writing the OnSubscribedEvent Handler Method Writing Your Handler Methods

ork

one

can

 is

u
t’s

ent.
 can

at
Writing the OnSubscribedEvent Handler Method

If your Service subscribes to another Service’s Events, you must have a
handler method calledOnSubscribedEvent . In this handler method, you
take the following steps:

1. Receive the Event TOM passes to the handler method so that you can w
with the Event.

2. Retrieve any Output DataItems of the Event.

3. Take other action.

Accept TOM Event
as Argument

Let’s start by declaringOnSubscribedEvent as public and having it receive
a single argument of a TOM Event passed to it by value. This Event is the
your Service subscribes to:

Public Sub OnSubscribedEvent(ByVal TomEvent As tom.Event)

Trap Any Errors
That Occur

Before you generate any other code, at the top of the handler method, you
have anOn Error Goto statement that sends program control to an
ErrorTrap section when it encounters an error while this handler method
running:

On Error GoTo ErrorTrap

Retrieve Any
Output DataItems

You verify the Event that occurred. If the Event name matches the one yo
expected, you can retrieve any of its Output DataItems. In this situation, le
store the value of the received Event’s first DataItem in a local variable:

If TomEvent.Name = "Connect" Then

m_bConnected = True

m_bConnectedData = Event.Outputs.Item(1).Value

End If

Take Other Action You can take any other action you want to take when notified about the Ev
Usually the Event that is passed to your Service is already a clone, so you
often treat it as a clone; however, it may not be a clone, so be aware of th
possibility.

The sample code clones its own Event and stores its reference inNewEvent .
It then setsNewEvent ’s DataDef2 to the received Event’sDescription
Property:

NewEvent.Outputs.Item("DataDef2").Value = TomEvent.Description
3-30
Brooks Automation

Triggering Your Service EventWriting Your Handler Methods

r

n.

t’s

ice
ger
Handle Any Errors In theErrorTrap section, in addition to any error handling required for you
Service, if you created a new object in this handler method, you should
always include the exact code that follows, only you should substitute the
appropriate variable forNewEvent :

ErrorTrap:

Dim ErrorState As t_ErrorState

srvSaveErrorState ErrorState

‘insert custom error handling code here

Set NewEvent = Nothing

srvRestoreErrorState ErrorState

srvExtendError "OnSubscribedEvent"

For details on how this code handles the error, refer toExtending an Error,
p. 4-3. Next, you see how to trigger your own Service Event.

Triggering Your Service Event

In addition to subscribing to other Service’s Events, your Service can have
Events of its own that it triggers.

To trigger your own Service Event:

1. Clone the Event within your Service that you want to trigger.

2. Set any Output DataItems of the Event.

3. Trigger the Event for any subscribing higher-level Service or applicatio

Clone Your
Service Event

Before you can trigger your Service’s Event, you must clone the Event. Le
clone the ToolEvent defined earlier inOnCreate :

Set NewEvent = srvCloneEvent(m_oService, EVENT_CONNECT)

Set Any Event
DataItems

Once you have the clone, you then set theNewEvent ’s Output DataItem
Property:

NewEvent.Outputs.Item("DataDef2").Value = “First ToolEvent”

Trigger the Event
for Application

Next, you need to trigger the Event for any application or higher level Serv
that receives notifications about/subscribes to your Service’s Event. To trig
the Event, you usesrvTriggerEvent . You pass this routine the clone of the
Event stored inNewEvent :

srvTriggerEvent NewEvent

When you call this routine, it triggers theOnSubscribedEvent of the
subscribing Service or thetomCtrl_EventNotification routine in the
application.
3-31
Service Developer’s Guide

Triggering Your Service Event Writing Your Handler Methods

 a
You may want to trigger your own Event in response to another Service’s
Event occurring.

For more details on how an application receives notifications of Service
Events, refer to theTOM Application Developer’s Guide.

Code of Sample
OnSubscribedEvent

The full code of the sampleOnSubscribedEvent routine follows. This
code receives a subscribed Event and triggers its own Event in response,
relatively common scenario.

In this code, after receiving notification that an Event you subscribed to
occurred, you check to see if theValue of theToolEnabled attribute of
your Service isTrue . If it is, you clone your own Event (EVENT_CONNECT) in
response. Next, you check to see if the Event that occurred was theConnect
Event ofProtocolSECS; if so you then can take theDescription Property
of theConnect Event and use it to setDataDef2 of your Event. Finally, you
trigger the clone of your own Event for the application using your Service.

Public Sub OnSubscribedEvent(ByVal TomEvent As tom.Event)

Debug.Print "Entering OnSubscribedEvent"

On Error GoTo ErrorTrap

Dim NewEvent As tom.Event

If m_oService.Attributes.Item(ATT_EVENT_ENABLED).Value = "True" Then

Set NewEvent = srvCloneEvent(m_oService, EVENT_CONNECT)

Debug.Print NewEvent.Name

If TomEvent.Name = "Connect" Then

NewEvent.Outputs.Item("DataDef2").Value = TomEvent.Description

srvTriggerEvent NewEvent

End If

Else

Debug.Print "ToolEventEnable is False"

End If

Debug.Print "Leaving OnSubscribedEvent"

Exit Sub

ErrorTrap:

Dim ErrorState As t_ErrorState

srvSaveErrorState ErrorState

Set NewEvent = Nothing

ErrorState

srvExtendError "OnSubscribedEvent"

End Sub
3-32
Brooks Automation

Writing the OnVerify Handler MethodWriting Your Handler Methods

our
ler

as

ning

er
Writing the OnVerify Handler Method

TheOnVerify handler method triggers when an object of this Service’s
class is being verified. In this handler method, you must check that all of y
Service’s capabilities work correctly in the current environment. This hand
method is required.

To verify the Service, your Service’sOnVerify handler method should:

1. Execute each Method object it generates.

2. Ideally, the verification process should test each Event of the Service
well, or at least those events it can force the equipment to trigger. To
complete testing of other events, you should have an operator or
manufacturing engineer set up the equipment to generate each remai
event.

3. Send a notification to TOM that the verification is complete.

Accept a Boolean
as an Argument

Let’s start creating this handler method by declaring it as public:

Public Sub OnVerify(ByVal FullVerification As Boolean)

TOM passes the function aFullVerification variable that you should
assign to the corresponding variable you declared inGeneral
Declarations for the class. The argument is aBoolean variable.

How does your Service determine whether or not Full Verification is on? It
receives this information from an application. If you are using TOM Explor
to run your Service, you can set an option forFull Verification (select
View => Options and click on theGeneral tab), as shown below:
3-33
Service Developer’s Guide

Writing the OnVerify Handler Method Writing Your Handler Methods

e

in

 to

e

ctly
n

n

Prepare to Handle
Any Errors

Before you take any action in theOnVerify handler method, you first need to
send control to an error handler for any error that may have occurred in th
verfication process:

On Error GoTo ErrorVerify

Carry Out the
Verification
Process

To start verification, store the setting ofFullVerification (a Boolean) in
the local variable namedm_fFullVerification that you created earlier:

m_fFullVerification = FullVerification

Full Verification

If FullVerification is True , you should carry out an exhaustive
verification process for the Service, which thoroughly tests every Method
the Service. As long as theFullVerification Boolean variable isTrue ,
your Methods can and should change the state of the physical equipment
ensure they interact with the tool correctly. Ideally, the full verification
process should also test TOM Events using your equipment, at least thos
Events you can force the equipment to trigger. Other Events may not be
testable through the verification process.

Partial Verification

If FullVerification is False , you can still verify the tool, but you should
perform only those tests that do not modify the physical state of the
equipment when they execute. In this case, you must leave the tool in exa
the state you found it in at the start of the verification process. So, you ca
change the state of the physical equipmenttemporarily, as long as you restore
it to its original setting afterwards.

You can call a local handler method to carry out the full verification. In this
case, let’s calllVerify and pass it theTag of the first method to verify for
the index into the verification sequence:

If InvokingMethod Is Nothing Then

' Do Verification

lVerify CompletedMethod.Tag

Else

' Take actions that should occur after method completes

lCompleted CompletedMethod, InvokingMethod

End If

In lVerify , you carry out the actual verification, as outlined in the section o
Verifying a Service—The Nuts and Bolts, p. 3-36. After the verification is
complete, you must send a notification to TOM.
3-34
Brooks Automation

Writing the OnVerify Handler MethodWriting Your Handler Methods

t

ew
hat
Send Notification
to TOM

Once the verification process is complete, you need to call thesrvVerified
handler support routine to let TOM know that the Service has completed i
verification process:

srvVerified m_oService

You must callsrvVerified to notify TOM. If you do not, the verification
process hangs because it is waiting for notification from your Service.

Handle Any Errors In this handler method, as inOnExecute , you need to have a section thatOn
Error Goto sends program control to. In theErrorTrap section, in
addition to any error handling required for your Service, if you created a n
object in this handler method, you should always include the exact code t
follows, only you should substitute the appropriate variable forVMethod :

ErrorVerify:

Dim ErrorState As t_ErrorState

srvSaveErrorState ErrorState

‘insert custom error handling code here

Set VMethod = Nothing

srvRestoreErrorState ErrorState

srvExtendError "OnVerify"

See alsoExtending an Error, p. 4-3.

Issues in OnVerify You need not haveOnVerify test all possible settings of Attributes that
establish configuration information:

N OT E TOM Tip—Testing Configuration Attributes in OnVerify

If your Service uses Attributes to establish configuration
information, you are not responsible for testing every
possible setting of such Attributes in theOnVerify handler
method. Instead, you can test your Service by assuming these
Attributes retain the default values assigned during
initialization.

N OT E Tip—Using the Tag Property of a Method

If you execute multiple Methods within your Service, you
can use theTag Property to indicate the last one run.
3-35
Service Developer’s Guide

Verifying a Service—The Nuts and Bolts Writing Your Handler Methods

e

g

est
e the
e an

n

nts
en

ed

n

Verifying a Service—The Nuts and Bolts

How do you verify the Service? You execute the Methods and Events of th
Service.

Execute the
Methods

You execute each Method object it generates, by carrying out the followin
steps for each:

1. UsesrvCloneMethod to create a clone of the Method.

2. Set up DataItem objects for the methods usingsrvAddDataItem .

3. Execute the Method clone usingsrvExecute .

For more details on executing a Method, refer toExecuting Existing Methods
in OnExecute, p. 3-22.

Trigger the Events In addition to testing each Method, ideally, the verification process should t
each Event of the Service as well, or at least those Events that it can forc
equipment to trigger. To complete testing of other Events, you should hav
operator or manufacturing engineer set up the equipment to trigger each
remaining Event.

1. UsesrvCloneEvent to create a clone of the Event.

2. Set up Output DataItem objects for the methods usingsrvAddDataItem .

3. Trigger the Event for the subscribing higher-level Service or Applicatio
usingsrvTriggerEvent .

To test Events, go to the lower level Service (level 0) and execute the Eve
to force them to occur. You can subscribe to the protocol level Events. Th
you verify the protocol level Service from TOM Explorer and that tests the
corresponding events in your Service.

For more details on triggering an Event, refer toTriggering Your Service
Event, p. 3-31.

Send Notification
to TOM

You are always required to send a notification to TOM when you have verifi
a Service. You must usesrvVerified . In TOM Explorer, you can see some
Properties of a Service that indicate the verify status:

■ Verified —Set toTrue when all of your Methods and Events have bee
run at least once.

■ Verfication Completed —True when you have done the
srvVerified on the Service.

N OT E When you runsrvExecute in this handler method, you
must not pass it theInvokingMethod argument.
3-36
Brooks Automation

Verifying a Service—The Nuts and BoltsWriting Your Handler Methods

n

tores

:

Take a Closer
Look at Sample
Verification
Process

The sample Service’slVerify function illustrates how the complete
verification process occurs in any Service.

When theOnVerify handler method executes, it determines whether to ru
lVerify or lCompleted and passeslVerify the name of the first method
to verify. The name is stored inCaseStep1 , so that the routine proceeds to
execute that case. For each case, it clones the next Method to verify and s
it in VerifyingMethod , then sets that method’sTag property to the name of
the next Method to verify:

Set VerifyingMethod = srvCloneMethod(m_oService, METH_METHOD1)

VerifyingMethod.Tag = CaseStep2

After setting up the action this way,lVerify callssrvExecute on the
VerifyingMethod , passing itNothing as the invoking Method, which is a
clue toOnMethodCompleted that the verification process executed the
Method:

srvExecute VerifyingMethod, m_oService, Nothing

As with all other calls ofsrvExecute , after it executes the Method, TOM
sends program control intoOnMethodCompleted . OnMethodCompleted
retrieves theTag from the Method and uses it as the nextIndex into
lVerify :

lVerify CompletedMethod.Tag

This process continues untillVerify receivesCaseEnd as the index. At this
point, lVerify callssrvVerified to indicate the Service has been verified

Case CaseEnd

srvVerified m_oService

Exit Sub

To carry out a partial verify, the sample code also illustrates checking
m_oFullVerfication and, if it is notTrue , setting theTag to CaseEnd at
that point to cut the verification process short.
3-37
Service Developer’s Guide

Verifying a Service—The Nuts and Bolts Writing Your Handler Methods

l

The following illustrates the flow of the code, which is a typical flow for a
verification process. WhenOnVerify executes a Method, TOM goes to
OnExecute to know what action to take. When TOM throws program contro
into OnMethodCompleted , the verification process is either finished or not
finished. The circle continues as long as the verification is not complete:

OnVerify

OnExecute

OnMethodCompleted

lVerify

lCompleted

srvExecute

If not finished

If finished

Method
3-38
Brooks Automation

Verifying a Service—The Nuts and BoltsWriting Your Handler Methods
Code of Sample
lVerify

The full code of the samplelVerify routine follows:

Private Sub lVerify(Index As Variant)

Dim VerifyingMethod As tom.Method

Dim ExecuteMethod As tom.Method

On Error GoTo ErrorTrap

Select Case Index

Case CaseStep1

Set VerifyingMethod = srvCloneMethod(m_oService, METH_METHOD1)

VerifyingMethod.Tag = CaseStep2

Case CaseStep2

Set VerifyingMethod = srvCloneMethod(m_oService, METH_METHOD2)

If m_oFullVerfication Then

VerifyingMethod.Tag = CaseStep3

Else

VerifyingMethod.Tag = CaseEnd

End If

Case CaseStep3

Set VerifyingMethod = srvCloneMethod(m_oService, METH_METHOD3)

VerifyingMethod.Tag = CaseEnd

Case CaseEnd

srvVerified m_oService

Exit Sub

End Select

srvExecute VerifyingMethod, m_oService, Nothing

‘Standard ErrorTrap code goes here

End Sub
3-39
Service Developer’s Guide

Writing the Version Handler Method Writing Your Handler Methods
Writing the Version Handler Method

TheVersion handler method triggers when a TOM application or Service
calls theVersion property this Service. For instance, you can access the
Version property of any Service from TOM Explorer.

The handler method must always call thesrvVersion handler support
routine, which takes no arguments.srvVersion returns a string that contains
the following properties of theApp object (the Visual Basic project):

■ Major

■ Minor

■ Revision

In the string it returns,srvVersion concatenates the three values and puts
dots between them, so the resulting string for aMajor value of 1,Minor
value of 0, andRevision value of 2 would contain the following:

1.00.0002

The code to theVersion function should always appear as follows:

Public Function Version() As String

 Version = srvVersion

End Function
3-40
Brooks Automation

Writing the OnTerminate Handler MethodWriting Your Handler Methods

s.
Writing the OnTerminate Handler Method

You are required to have anOnTerminate handler method for your Service.

TOM calls theOnTerminate handler method before the Service terminate

For example, in the sample Service, several objects are cleaned up in this
handler method:

Public Sub OnTerminate()

Set m_oService = Nothing

Set m_oLoopback = Nothing

Set m_oProtocol= Nothing

End Sub

Writing a Terminate Class Method

The finalMethod you must generate is not a handler method, but aclass
method. It is aTerminate method that terminates the class when the OLE
server stops running. This class method enters the terminate process by
calling OnTerminate :

Private Sub Class_Terminate()

Me.OnTerminate

End Sub

C A U T I O N
This handler method should clean up memory by
removing any objects your Service has created. You
remove the objects by setting the references to them
equal toNothing .
3-41
Service Developer’s Guide

INFO

not
l to
Creating a Tool for Your Service 4

Introduction

Topics in This Chapter

Every Service requires a Tool, even if it is a higher level Service that does
work with equipment. This chapter covers how to create a conceptual Too
work with a level 4 Service like the one illustrated in this manual. You take
the following steps using TOMBuilder:

Working with TOM Builder, p. 4-3

Creating a New Tool, p. 4-4

Creating a New Resource, p. 4-5

Adding Resources to the Tool, p. 4-6

Adding Your Custom Service to Database, p. 4-8

Assigning Services to Tool Resources, p. 4-11

Creating a New Service Dictionary, p.4-13

Assigning the Dictionary to a Service, p.4-16

Creating a New Resource Dictionary, p.4-17

Assigning the Dictionary to Resources, p.4-20

Creating DataDefs, p.4-21

Cloning DataDefs, p.4-27

Creating Attributes, p.4-28

Finalizing Tool by Releasing It, p.4-31

Building TOM Database (Containing New Tool), p.4-32
4-1
Service Developer’s Guide

Creating a Tool for Your Service
N OT E Before you create a new Tool, you should have your own
copy of the database to add the Tool to. You can create a new
database as described in Chapter 1 underEstablishing
Database Components, p. 1-3 andBuilding a Database of
Sample Tools, p. 1-5, also described in theTOM Builder
User’s Guide Help file.
4-2
Brooks Automation

Working with TOM BuilderCreating a Tool for Your Service

e

.
s

left

n

t

Working with TOM Builder

TOM Builder is an editor for the Tool Object Model (TOM) database. You us
TOM Builder to create and modify databases for TOM.

When you originally receive TOM, the database includes a series of
component files with.tbf extensions and a built database file with an.mdb
extension. Each.tbf file contains the information for a TOM component,
such as a Tool, Resource, Manufacturer, Dictionary, or Service. With the
TOM Builder you can edit the separate files (you make the changes in the
GUI and TOM Builder takes care of the separate component files for you)
After you edit the files, you then use TOM Builder to build a STATIONwork
database from those same files.

Use TOM Builder
Windows

When you first see TOM Builder, you see two windows side-by-side. The
window is called theObject View , the right theComponent View .

To work with a TOM object, such as a Tool, you must first put that object i
theObject View . You put the object there by taking these steps:

1. Click on the tab for the object type, such as the Tools tab.

2. When a list of the objects appears, double click on the particular objec
you want to modify, edit, copy, or take other action on.

3. The object should appear in theObject View .

If you are displaying a Tool in theObject View , you can expand it to see its
Resources, too; however, to modify, edit, copy, or take other action on the
Resources, you must repeat the steps above for the Resources object.

The object you take action on is always thetopmost object displaying in the
Object View .

Now, let’s take a look at how to form a new Tool.
4-3
Service Developer’s Guide

Creating a New Tool Creating a Tool for Your Service

t,

ck

of

.

ou
o add
Creating a New Tool

For the Service in this manual, let’s create a Tool with two Resources. Firs
you create the Tool:

1. Click on theTools tab.

2. From the menu bar, selectFile => Create new Tool .

3. When theCreate New Tool dialog appears, enter the name of the new
Tool exactly as you want it to appear in the database.

4. After you clickSave , theDetermine Tool Manufacturer dialog
appears. You can select a manufacturer from the list or create a new
manufacturer.

5. After you enter a new manufacturer or select an existing one and click
Save , theDetermine Tool Manufacturer dialog appears. You can
select a manufacturer from the list or, to enter a new manufacturer, cli
theCreate New Manfuacturer check box and enter the name next to
New Name. Later, the manufacturer and developer display as properties
the Tool in TOM Explorer.

6. Now, when you clickSave , the Tool appears in the list under the Tools tab
To display an icon for the Tool in theObject View , list the Tools in the
Component View and double click on the Tool’s name in the list.

Now you are ready to create some Resources for the Tool. Resources are
devices that make up the Tool, such as tubes that make up a furnace. If y
are creating a new Tool that does not use existing Resources, you need t
4-4
Brooks Automation

Creating a New ToolCreating a Tool for Your Service

eptual

ach

t

e-

nent

in

hree
ent.
hy

not

is
Resources to the database. For the sample Tool, you can also have conc
Resources.

Creating a New Resource

Resources are the physical or conceptual components of a Tool that are e
separately programmed to generate a model of the Tool.

For instance, a stepper is a Tool; its input POD and output POD are each
distinct Resources, since they behave differently.

Rule of thumb—if the equipment has a SECS Resource ID, then it is a
Resource rather than a Tool (although it can be both).

For the sample Tool, let’s create SMIF1 and SMIF2 as Resources:

1. In theComponent View , click the tab for the type of component you wan
to create (Resources). Select theFile => Create new...

2. A dialog pops up where you enter the name of the new Resource.

3. Once you have created a new component file you can edit it by doubl
clicking it in theComponent View .

Creating a new component makes a new file in the corresponding compo
directory. The file has a.tbf extension. You can see a list of the existing
components of a particular type by clicking on the tab for that component
theComponent View .

Logical Resources You can also have logical Resources. How do you know a Resource as
logical? For instance, if you have a stepper with two SMIF arms, each a
Resource, you could make a single logical Resource that represents the t
as a unit. This logical Resource is not associated with any physical equipm
You could then attach Services to this “super stepper” logical Resource. W
not make the “super stepper” a Tool? Because if it were a Tool, you could
have Services for it. You must associate Services with a Resource.

Now, you are ready to add Resources to the Tool (what actually happens
that the Tool references the Resources).
4-5
Service Developer’s Guide

Adding Resources to the Tool Creating a Tool for Your Service

sign
e:

 this
Adding Resources to the Tool

Once you have created a new Tool and created Resources for it, you can
assign the Resources to the Tool. You can also follow this procedure to as
more Resources to an established Tool. Take this action for each Resourc

1. To display an icon for your Tool in theObject View , first click on the
Tools tab in theComponent View , then double click on the Tool’s name
in the Tools list.

2. Now, to add Resources to the Tool, click on the Resources tab in the
Component View.

3. When you see a list of Resources, click on the one you want added to
Tool and hold down the mouse button.

4. Drag and drop the Resource icon onto the Tool icon in theObject View .
4-6
Brooks Automation

Adding Resources to the ToolCreating a Tool for Your Service

ool.

next
You should see the Resources appear under the Tool in theObject View .

Next, you can select existing Services that match the messages of your T

If you have a custom Service you want to add to the Tool, proceed to the
section.
4-7
Service Developer’s Guide

Adding Your Custom Service to Database Creating a Tool for Your Service

st

s.
Adding Your Custom Service to Database

You can add your own Service to the database before it is successfully
compiled; however, you cannot use the Service until you have compiled it
(Chapter 5 takes you through compiling and debugging the Service):

1. Click on the Services tab in the Component View.

2. ForProvider enter the root name of the Visual Basic project file.

3. ForClass enter the root name of the.cls file in the Visual Basic
project.

(TogetherProvider andClass make up the name of the component
file.) The illustration shows entering the name of the sample Service ju
to illustrate how the provider and class fit together to form the name
demo.sample .

4. Click Save . The name of the Service then appears in the list of Service

Next, you must set Properties of the Service.
4-8
Brooks Automation

Setting Properties of Your ServiceCreating a Tool for Your Service

ing

e.

n

Setting Properties of Your Service

To set the Properties of a Service, first be sure the list of Services is display
by clicking the Services tab. Then:

1. Double click on the Service name. The Service appears in theObject
View .

2. Click theEdit tab to edit the Properties of the Service.

3. TheName property (at the bottom) is required. Set theName to the root
name of the.cls file in the Service’s Visual Basic project. For the
demo.sample Service,sample alone is the name. The name of a
standard Service should not change.

4. CanClone is optional, but defaults toFalse . Set CanClone to True if
you want other Services or Applications to be able to clone this Servic
Otherwise, leave itFalse .

5. Comments are optional. Enter any comments you want to make in the
Comments field. To enter a long comment, double click in the field and a
Cell Editor dialog appears, where you can see more characters.

6. TheDescription is optional. This description later appears in TOM
Explorer. To see a larger area, double click in the field and anCell
Editor dialog appears, where you can see more characters.

7. TheHelpContext is the Help context ID to index into the Help file for
the Service.

8. HelpFile is the name of the Help file, including its .HLP extension.
4-9
Service Developer’s Guide

Setting Properties of Your Service Creating a Tool for Your Service

s.

9. Level is the level of the Service. The default is 0, but your Service is

unlikely to be talking directly to the equipment, as a Level 0 Service doe
For details on the meanings of the Service levels, refer toService Levels.

10. Right click on the Service icon in theObject View and selectSave .

The Service is not ready to use until you assign it to a Resource.
4-10
Brooks Automation

Assigning Services to Tool ResourcesCreating a Tool for Your Service

 Tool

 of
Assigning Services to Tool Resources

You always assign Services to the Resources of a Tool, rather than to the
itself. To assign a Service to a Resource:

1. Click the Resources tab in the Component View.

2. Double click on the Resource you want to assign the Service to. The
Resource should appear in theObject View .

3. Click on the Services tab. Here you should find your Service in the list
Services.

4. Select your Service’s name and hold down the mouse button.

5. Drag and drop the Service icon onto the Resource icon in theObject
View .

1. Click on the icon for the Service in theObject View .
4-11
Service Developer’s Guide

Assigning Services to Tool Resources Creating a Tool for Your Service

ice
t

2. Click theReferences tab to see the Resources appear under the Serv
in theObject View . Under this tab, you now see all the Resources tha
reference this Service.

Your custom Service is still not ready to use until you have added all the
Attributes it requires.

N OT E You cannot add Attributes to a standard Service, only to a
custom Service.
4-12
Brooks Automation

Creating a New Service DictionaryCreating a Tool for Your Service

gle
e

fs

ECS

t

 the
Creating a New Service Dictionary

There are two types of Dictionaries in TOM Builder—Service Dictionaries
and Resource Dictionaries. They each have aServiceDictionary Property
that is eitherTrue or False . You establish this Property’s setting when you
first create the Dictionary.

A Service Dictionary is so named because it is a Dictionary for a set (a sin
DLL) of Services. For instance, the SECS Standard Dictionary is a Servic
Dictionary for the SECS Services provided with TOM.

A Service Dictionary defines the DataDefs used by a collection of related
Services. For instance, the SECS Standard Dictionary defines the DataDe
used by SECS Services at levels 0 through 3.

You need to create a new Dictionary for your custom Tool. If your Tool has
DataDefs that are not defined in any other existing Dictionary (usually not
defined in SECS Standard Dictionary), you must create a Dictionary that
contains those DataDefs. You can have that Dictionary be a copy of the S
Standard Dictionary that you add your specific DataDefs to. The DataDefs
you create that are for your Service only are calledService Specific DataDefs.

Keep in mind that a Service Dictionary is always self-contained—it canno
reference other Dictionaries. Another type of Dictionary in TOM, the
Resource Dictionary,can reference other Dictionaries.

Before you can associate a new Dictionary with a Service, you first create
Dictionary:

1. Click on theDictionaries tab in theComponent View .

N OT E Developing Service Dictionaries is a specialized field. You
shouldnever modify the Service Dictionaries provided with
TOM. If, however, you are developing of a new collection of
TOM Services, you can copy the original Dictionaries and
alter the copies.
4-13
Service Developer’s Guide

Creating a New Service Dictionary Creating a Tool for Your Service
2. SelectFile =>Create New Dictionary and fill in the name of the
dictionary.

3. If the dictionary is associated with a particular Service, click in the
Service Dictionary check box to set this property toTrue . Once you
make it aService dictionary, you cannot assign it to a Resource.

Add Description of
Dictionary

To add a description of the dictionary:

1. Click on theDictionaries tab.

2. Double click on the Dictionary name in the list. It should appear in the
Object View .
4-14
Brooks Automation

Creating a New Service DictionaryCreating a Tool for Your Service
3. Click theEdit tab and fill in theDescription property. If you decide
you want to change the setting ofServiceDictionary property (True
or False), change it here.

4. Go back to theObject View and right click. SelectSave from the
pulldown menu that appears.

Next, you assign the dictionary to the Service that later uses it.
4-15
Service Developer’s Guide

Assigning the Dictionary to a Service Creating a Tool for Your Service

t to

to
Assigning the Dictionary to a Service

To assign a Dictionary to a Service, first be sure it is a Service Dictionary,
then:

1. Click on the Services tab in theComponent View .

2. When the list of Services appears, double click on the Service you wan
assign the Dictionary to.

3. When the Service’s icon appears in theObject View , go to the
Component View and click on the Dictionary tab. A list of Dictionaries
appears.

4. Select a Dictionary in the list and drag and drop the dictionary icon on
the Services icon in theObject View .

Next, you must create a Resource Dictionary.
4-16
Brooks Automation

Creating a New Resource DictionaryCreating a Tool for Your Service

s
h

nary,

r
ore

rce,
Creating a New Resource Dictionary

A Resource Dictionary is quite different from a Service Dictionary. It contain
all Dictionary information required for a particular Resource of a Tool. Eac
Resource has one and only one Resource Dictionary. That Resource
Dictionary can reference multiple Service Dictionaries. For instance, if the
Resource receives SECS messages, then its Resource Dictionary should
reference the SECS Standard Dictionary. If the Resource also uses, for
instance, the MES Services, since that set of Services use another Dictio
the Resource Dictionary should also reference the Service Dictionary for
MES Services.

In addition, you may have custom Service Dictionaries that work with you
own set of Services. The Resource Dictionary may also reference one or m
of those Service Dictionaries.

So that you can associate one or more Service Dictionaries with a Resou
you first create the Resource Dictionary:

1. Click on theDictionaries tab in theComponent View .

2. SelectFile =>Create New Dictionary and fill in the name of the
dictionary.

Do not click in theService Dictionary check box. If you make it a
Service Dictionary, youcannot assign it to a Resource; also, once it is a
Service Dictionary, you cannot make it a Resource Dictionary.
4-17
Service Developer’s Guide

Creating a New Resource Dictionary Creating a Tool for Your Service

ble

the

le

d
s to
CS
r

After you clickSave , you can see the Properties of the Service by dou
clicking on it until its icon appears in theObject View , then clicking the
Edit tab.

If you want the option of modifying DataDefs in a Service Dictionary, then
you should create a reference to that Service Dictionary in the Resource
Dictionary.

You create a reference to any Service Dictionary required by the Service
Resource uses. Usually the only one you need to reference is the SECS
Standard Dictionary. However, in thedemo.sample Service you set the
DataDefs in the Service Dictionary, so you need to have the Resource
Dictionary reference the Service Dictionary:

1. Once the Resource Dictionary appears in the list of Dictionaries, doub
click on its name until its icon appears in theObject View .

2. Click on the Dictionary icon in theObject View .

3. Find the Service Dictionary in the list of Dictionaries under the
Dictionaries tab; then select it and hold down the mouse button.

4. Drag and drop the Service Dictionary onto the Resource Dictionary.

5. Repeat the previous step for each Service Dictionary this Resource
Dictionary references.

6. Your Resources may also require the SECS Standard Dictionary if the
Resource uses a SECS/GEM/VFEI Service. If your Service clones an
executes a method of a SECS, GEM, or VFEI Service, or adds DataDef
or modifies DataDefs of one of those Services, you must include the SE
Standard Dictionary in your Resource Dictionary. You should add othe
4-18
Brooks Automation

Creating a New Resource DictionaryCreating a Tool for Your Service

n

y to
Service Dictionaries to the Resource only if the Service documentatio
specifically states that the Dictionary is required.

7. Go back to theObject View and right click. SelectSave from the
pulldown menu that appears.

After you create a Resource Dictionary, you assign the Resource Dictionar
Resources.
4-19
Service Developer’s Guide

Assigning the Dictionary to Resources Creating a Tool for Your Service

vice

u

to

.

Assigning the Dictionary to Resources

To assign a Dictionary to particular Resources, first be sure it is not a Ser
Dictionary, then:

1. Click on the Resources tab in theComponent View .

2. When the list of Resources appears, double click on the Resource yo
want to assign the Dictionary to.

3. When the Resource’s icon appears in theObject View , go to the
Component View and click on the Dictionary tab. A list of Dictionaries
appears.

4. Select a Dictionary in the list and drag and drop the dictionary icon on
the Resources icon in theObject View .

5. If you are creating a custom Dictionary for a piece of SECS or GEM
equipment, be sure to assign theSECS Standard Dictionary to its
resource or resources.

6. In theObject View and right click. SelectSave from the pulldown
menu that appears.

Now that you have some Dictionaries, you need to put DataDefs into them
4-20
Brooks Automation

Creating DataDefsCreating a Tool for Your Service

ad
use

d to
dy

ld
M

nt
Creating DataDefs

A DataDef is like a template. Once you have defined a DataDef you can lo
it into the Service specific area of the Service for customized use. You can
DataDefs from other Services that your Service is working with as well as
DataDefs defined specifically for your Service in its own Dictionary.

What Can Your
Service Do with
TOM DataDefs?

Your Service can use DataDefs as templates for DataItems it needs. Your
Service may:

■ Use a subset of DataDefs from its own Dictionary
■ Add DataDefs from another Service’s Dictionary

For example, your Service might copy the DataDefs underEquipment
Constants from the SECS Standard Dictionary by “loading” them. The
Service can then use those constants.

Another example might be to use theALID DataDef (an input to theEnable
Method of theGemAlarmManagement Service) to set up a particular list of
Alarms for that Service from within your Service.

Create DataDefs in
Your Service

To create DataDefs for your Service:

1. Create a constant for any DataDef for the Service (which you later ad
the database) or any DataDef the Service uses from a dictionary alrea
existing in TOM. Some examples of constants in the sample Service:

Private Const DD_DD1 = “DataDef1”

Private Const DD_CHILDA = “ChildDataDefA”

Private Const DD_CHILDB = “ChildDataDefB”

Private Const DD_DD2 = “DataDef2”

2. Later, inOnInitialize , you load the DataDefs into the reference:

Set m_oDataDef1 = srvLoadDataDef(m_oService, Nothing, DD_DD1)

Set Method = srvDefineMethod(m_oService,METHODNAME,”Text”)
srvAddDataItem m_oService, Method.Inputs, m_oDataDef1

3. If you have not already defined the DataDef in the database, you shou
add it to the Dictionary associated with this Service using either the TO
DB Editor or the TOM Builder. Refer to the next section (or the TOM
Builder Help file) for details.

Create DataDefs in
the Dictionary

If the Dictionary is a Service Dictionary, it must be self-contained—the pare
of a given DataDef must be defined within the same Dictionary if it is a
Service Dictionary.
4-21
Service Developer’s Guide

Creating DataDefs Creating a Tool for Your Service

 of a
or

e a
ice.

ne
 add

c-
By comparison, Resource Dictionaries are not self-contained. The parent
DataDef in a Resource Dictionary may be defined in the same Dictionary
in a Service Dictionary.

This structure is designed to help you, the Service/Driver developer, creat
skeletal Dictionary that contains a structure that makes sense for the Serv
By forming the skeletal structure, you create rules that TOM Driver
developers can follow when creating Dictionaries for Service. More than o
Service can (and usually does) reference the same Service Dictionary. To
the Service specific DataDef to the Dictionary:

1. Click on the Dictionaries tab in the Component View to see a list of Di
tionaries.

2. Double click on the Dictionary in the list that you want to add the
DataDefs to. The Dictionary should appear in theObject View.
4-22
Brooks Automation

Creating DataDefsCreating a Tool for Your Service

ord
3. In the Object View, right click on the Dictionary name and selectAdd

DataDef .

4. When theAdd DataDef dialog appears, to create theService

specific DataDef, be sure you enter it exactly as shown below,
with a space between the words and a lowercase S starting the w
specific.

5. After you click on OK, an icon for the DataDef should appear in the
Object View.

N OT E For New Services

For a new Service, you must add the Service specific
DataDef.
4-23
Service Developer’s Guide

Creating DataDefs Creating a Tool for Your Service

n

or
et

u

f.
6. Click on the DataDef’s icon; then go to the Component View and click o
theEdit tab.

The editable properties of a DataDef appear in the Component View. F
the Service specific DataDef or any other parent DataDef, you must s
the required Properties:

◆ Format —Must beList(0) for any top-level DataDef that has
children.

◆ LinkChildren —Must beTrue for any parent DataDef, including
the Service specific DataDef. When it isTrue , TOM automatically
creates links between the parent DataDef and its children when yo
instantiate the Tool that uses this DataDef.

◆ LoadChildren —Must beTrue for any parent DataDef, including
theService specific DataDef. When it isTrue , TOM
automatically loads the children when you load the parent DataDe
4-24
Brooks Automation

Creating DataDefsCreating a Tool for Your Service
◆ Maximum—For a parent DataDef, set to the maximum number of
children the DataDef can have. For a child DataDef, set to the
maximum value it can have.

◆ Minimum—For a parent DataDef, set to the minimum number of
children the DataDef must have. For a child DataDef, set to the
minimum value it must have.

◆ Name—Set to the name of the DataDef with the exact spacing and
capitalization you used when you created the DataDef.

Be sure to save the DataDef:

1. Click Save in the Component View.

2. Right click on the DataDef icon in the Object View and select Save.

Add Children to
the Database

When you add child DataDefs, for the Service specific DataDef, you must
have a child DataDef that has the name of the class. For thedemo.sample
Service, the child must be namedsample(see below). This DataDef must also
be a parent, so it has theList(0) format and other settings appropriate for a
parent DataDef. Below this DataDef, you add the entire hierarchy of other
DataDefs that are specific to your Service.

Loading DataDefs
in Your Service

1. In OnCreate , you can load the DataDefs using thesrvLoadDataDef
handler support routine.
4-25
Service Developer’s Guide

Creating DataDefs Creating a Tool for Your Service
Load a Top-Level
DataDef from
Dictionary

If the DataDef you are loading is immediately under a top-level Dictionary
object, you can passNothing as the parent.

The routine returns a DataDef object that belongs to this Service, of type
tom.DataDef.

For example, to load the“SECS elements” , a top level DataDef in the
Standard SECS Dictionary, into theSECSElements variable, you enter:

Set SECSElements = srvServiceDictionaryRoot(m_oService)._
Item(“SECS elements”)

srvServiceDictionaryRoot returns the parent DataDef from the top
level under the Dictionary. Later this entire branch of the SECS Standard
Dictionary appears in your Tool’s Dictionary in TOM Explorer.
4-26
Brooks Automation

Cloning DataDefsCreating a Tool for Your Service

ce.

e in

you
then
Cloning DataDefs

You can create clones of DataDefs from the Dictionary to use in your Servi
You create a clone usingsrvCloneDataDef inside yourOnCreate handler
method.

ThesrvCloneDataDef routine takes these arguments:

■ ToParent—Name of the service being developed.

■ FromDataDef—Parent DataDef of the collection of DataDefs being
loaded.

■ NewName—Optional. Set equal to a string containing the name of the
new DataDef. If you leave out this argument, the routine uses the nam
FromDataDef.

■ Children—Optional. Set equal to a True if you want children defined,
False if not.

The routine returns a reference to a new DataDef object.

To make clones of the SECS elements in the Standard SECS Dictionary,
first create a variable to receive the reference to the new DataDef object,
usesrvCloneDataDef to clone the entire set of DataDefs:

You later see the clones as DataItems in the Dictionary under the Service
Specific area for your service.

Once you have created the clones inOnCreate , you have set up the “empty
shells” for DataDefs, but the actual DataDefs do not yet exist. Later, when
you clone the Method that uses these DataDefs, you actually fill in the
DataDefs and assign them DataItems.

Now, you can use the DataDef clones within your Service.

Set m_oLocSECS = srvCloneDataDef(srvServiceDataDef(m_oService),_
SECSElements.Item(“SECS elements”), NewName:=”My SECS elements”, Children:=T r
4-27
Service Developer’s Guide

Creating Attributes Creating a Tool for Your Service

ble

her

le

vari-
Creating Attributes

An Attribute is a piece of information about the Tool or about a lower level
Service.

What Can Your
Service Do with
TOM Attributes?

Your Service can do the following with Attributes:

■ Read values of Attributes from a lower level Service. For instance, you
can determine the comm port the tool is connected to over RS-232 ca
by retrieving thePortID Attribute of theProtocolSECS Service.

■ Set Attributes of a lower level Service to change its behavior. For
instance, it can set the value of the Tool’sIPAddress , which is an
Attribute of theProtocolSECS Service.

■ Have its own Attributes, which you must add to the database using eit
TOM Builder or TOM DB Editor.

Create Attributes
in Your Service

Let’s take a look at how to create Attributes in your Service. For the samp
Service, you could create an Attribute that you set to enable or disable the
ToolEvent Event:

1. To define the attribute inside the class, you can define constants and
ables to represent the attribute:

Private Const TOOLEVENTENABLE = "ToolEventEnable"

Private Att_ToolEventEnable As Boolean

2. Define ToolEventEnable in the database using TOM DB Editor or
TOM Builder. When you define the attribute in the database, you also
assign it a default value, which becomes the attribute’s value after it is
initialized. For more detail, refer to the next section.

Add Attributes to
the Database

To add an Attribute of the Service to the database:

1. Click on theServices tab in theComponent View .

2. In the list of Services that appears in theComponent View , double click
on the Service you want to add the Attribute to.
4-28
Brooks Automation

Creating AttributesCreating a Tool for Your Service
3. When the Service appears in theObject View , right click on the Service
icon and selectAdd Attribute from the pulldown menu.

4. The Attribute icon should appear below the Service icon in theObject
View . When it does, you can click theEdit tab to edit the properties of
the Attribute.
4-29
Service Developer’s Guide

Creating Attributes Creating a Tool for Your Service

the
5. Set theDefaultValue , enter theName, and setReadOnly to True or
False , and set the data type inVarType to a Visual Basic data type, such
asString , Integer , or Variant .

6. Click Save in theComponent View .

7. Right click on the Service icon in theObject View and selectSave .

After you have taken all steps in this section,ToolEventEnable is an
Attribute of your Service.

You can see the Attributes in TOM Explorer. For example, below you see
Attribute from the sample Service.
4-30
Brooks Automation

Finalizing Tool by Releasing ItCreating a Tool for Your Service

ou
Finalizing Tool by Releasing It

When you have finished creating the Tool, you cannot use the Tool until y
release it, as follows:

1. Click on theTools tab.

2. In the list of Tools that appears in theComponent View , double click on
the Tool you want to release. An icon for the Tool should appear in the
Object View .

3. Click on the icon for the Tool and then click on theEdit tab in the
Component View .

4. When the Properties for the Tool appear in theComponent View , change
theReleased property toTrue .

5. Right click on the Service icon in theObject View and selectSave .

If you have carried out all the preceding steps and released your Tool, you
cannot use it until you build the database.
4-31
Service Developer’s Guide

Building TOM Database (Containing New Tool) Creating a Tool for Your Service

nent

ly.

o
ides.
lt

the

dy to
Building TOM Database (Containing New Tool)

The Build operation creates a new STATIONworks Database. The compo
files are inserted into the database.

STATIONworks cannot use the component files of the TOM Builder direct
You must build a database before you can test it with STATIONworks.

Before you proceed to build, you can remove any excess Services or
Dictionaries that you are not using. SelectFile => Delete from the menu
to delete any object. This action pares the database down to only the
necessary components.

To build a TOM database:

1. SelectFile => Build Database... from the menu bar.

2. In the dialog box that displays, enter the name of the TOM database t
build. The default database name that appears is the one Brooks prov
Be sure to assign your own database name. Do not overwrite the defau
database.

3. To test each Tool, you should open the Tool in TOM Explorer and run
Verification Service on each Service for each Resource of the Tool.

Once you have built the database and have tested each Tool, you are rea
add the.tbf files TOM Builder has created to the revision control system.

To alter the database, check out the.tbf files, edit the database, and then
rebuild it.

N OT E You can rebuild the database this same way after adding a
single Tool or several Tools. Brooks advises that you test
each new Tool before checking in your database.
4-32
Brooks Automation

INFO

 no
 you
Debugging/Testing Your Service 5

Introduction

Topics in This Chapter

After you have completed the handler methods of your Service and it has
syntax errors, you are ready to Debug it in runtime mode. In this chapter,
see how to use TOM Explorer for debugging.

Preparing to Use Your Service in TOM Explorer, p. 5-2

Running Your Service in Debug Mode, p. 5-4

Executing Methods through TOM Explorer, p. 5-8

Verifying the Service from TOM Explorer, p. 5-11

Exiting TOM Explorer, p. 5-14

Compiling Your Service—Final Compile, p. 5-15

Testing Your Service, p. 5-15

Using Your Service in an Application, p. 5-15
5-1
Service Developer’s Guide

Preparing to Use Your Service in TOM Explorer Debugging/Testing Your Service

B

ct.

e

M

Preparing to Use Your Service in TOM Explorer

Before you can use your Service in TOM Explorer, you must add the
following information about your service to the database using either the D
Editor or TOM Builder:

■ ServiceClassName — Set to theName property of the Visual Basic class
module. This property applies to only a single service within your proje

■ ServiceProvider —TheProject Name you assigned to the Visual
Basic project earlier. Brooks recommends that the .DLL’s root name b
the same as the name of the Visual Basic project. The
ServiceProvider must be the same as the Visual BasicProject
Name.

The sameProvider applies to all the services in your project.

You put this information into the database using either the TOM Builder or
the TOM DB Editor.

Make Service
Available to TOM
Explorer with TOM
Builder

To make it available to TOM Explorer, you must add your service to the TO
database. To add the service:

1. Click the Services tab.

2. Go to the menu bar and selectFile => Create New Service .

3. When the Create New Service dialog appears, enter theProvider and
Class in the edit boxes, as shown below:

C A U T I O N
Remember to place your unique prefix at the
beginning of your DLL and your Service name.
5-2
Brooks Automation

Preparing to Use Your Service in TOM ExplorerDebugging/Testing Your Service

d

The name of yourProvider should contain the company prefix (MY)
followed by a code that identifies the type of Service or Services in the
file.

TheClass is simply the root name of the .cls files for the service.

4. Click Save to add the Service to the database.

Follow the instructions provided with TOM Builder to associate Tools an
Resources with your Service.

Set Required
Attributes in
Database

Be sure you have set Attributes your Service requires in the database
using either TOM Builder or TOM DB Editor.

For the sample Service theToolEventEnable attribute should already
be set toTrue .
5-3
Service Developer’s Guide

Running Your Service in Debug Mode Debugging/Testing Your Service

al
le
 the

e as
he
e

Running Your Service in Debug Mode

Debugging a Service is not exactly the same as debugging any other Visu
Basic program. What is different about it? Well, first, you must fully compi
the Service to make it available to the Tools you have associated it with in
database.

Then your Service doesn’t really run unless your Tool is using it.

So, how do you debug the Service? You carry out a series of steps:

1. Begin by creating a shortcut to TOM Explorer and setting it to run the
database containing your Tool. Since that may or may not be the sam
the standard database, be sure to set the path to the database using t/d
option and following it with the full path to the database (or the local fil
name if it is in the same directory as TOM Explorer):

C:\FASTech\TOM\bin\texplorer.exe /d tomDB.mdb
5-4
Brooks Automation

Running Your Service in Debug ModeDebugging/Testing Your Service

ea
y

2. In your class code, set some breakpoints in Visual Basic. It’s a good id
to put a breakpoint at the beginning of each handler method and at ke
lines inside them.

3. Go to the Visual Basic menu bar and selectRun => Start with Full
Compile . This way, your Service is completely compiled for your Tool to
use.

4. Notice that nothing appears to be happening. To see action in the
Immediate window, start TOM Explorer and open theImmediate
5-5
Service Developer’s Guide

Running Your Service in Debug Mode Debugging/Testing Your Service

de,

ach
window. In a moment, theCreate Tool Object window appears and
your Tool should be in the list of Tools. Select your Tool. To run the
demo.sample service, select theStepper Tool.

5. When the Visual Basic debugger stops on the first breakpoint in your co
start stepping through the code. You’ll step throughOnCreate ,
LetAttribute , and thenOnInitialize , in that order. Then you’ll step
through them again—why? Because the TOM Explorer runs them for e
Resource associated with the Tool and the Stepper Tool has two
resources—SMIF1 and SMIF2.

6. You may see some of the text printed to theImmediate window print
more than once. If you do, it is because TOM Explorer’sAuto Refresh
5-6
Brooks Automation

Running Your Service in Debug ModeDebugging/Testing Your Service
option is on. You can turn it off by selectingView => Options from the
menu bar, going to theGeneral tab, and then toggling off theAuto

Refresh check box.

7. Continue to step through the code and you see TOM runGetAttribute
twice, once for each Resource.
5-7
Service Developer’s Guide

Executing Methods through TOM Explorer Debugging/Testing Your Service

n.

al
Executing Methods through TOM Explorer

After TOM has retrieved the Attribute settings, it waits for you to take actio
The Tool displays in TOM Explorer.

1. Now, try expanding the Tool. Find the Methods under one of the
Resources. Right click on the Method and selectExecute from the pull-
down menu.

2. If your code stops at a breakpoint, click on the Continue icon in the Visu
Basic debugger.
5-8
Brooks Automation

Executing Methods through TOM ExplorerDebugging/Testing Your Service

ting
3. You should be able to see the Service proceeding in the code and prin
statements about where it is into theImmediate window.

You can see that whenMethod1 executes theTest method, TOM sends
program control intoOnMethodCompleted for Test .
OnMethodCompleted then carries out end tasks forTest .
5-9
Service Developer’s Guide

Executing Methods through TOM Explorer Debugging/Testing Your Service

r

4. As each Method completes, TOM Explorer pops up aMethod
Notification to show it has completed, first forMethod1 , then after
you acknowledge that one by clicking OK, another forTest .

5. To see the results of runningMethod1 , you can click on the Methods tab
and expand each Method shown there.

6. Execute the other Methods to see the messages that appear in the
Immediate window.

7. If you have equipment connected, you may want to test Events in you
Service by forcing the equipment to trigger one.
5-10
Brooks Automation

Verifying the Service from TOM ExplorerDebugging/Testing Your Service

ot
Verifying the Service from TOM Explorer

Before you proceed to verify the Service, you should decide whether or n
you want to run a full verification. You can toggle this option in TOM
Explorer by selectingView => Options from the menu bar, going to the
General tab. Toggle on or off theFull Verification check box.
5-11
Service Developer’s Guide

Verifying the Service from TOM Explorer Debugging/Testing Your Service
1. Expand the Resource and find your Service under it.

2. Right click on the Service and selectVerify from the pulldown menu.
5-12
Brooks Automation

Verifying the Service from TOM ExplorerDebugging/Testing Your Service

be

od
3. When the Visual Basic Debugger stops on your first breakpoint, it will
in OnVersion , which it runs first. It then proceeds toOnVerify . You can
see the trace statements in yourImmediate window.

Notice that the verify process executes each method and when a meth
has been cloned, then executed, it runsOnMethodCompleted .

After it verifies the first Method, notice that TOM leavesOnVerify and
takes all other verification action inOnMethodCompleted . In the sample
Service,OnMethodCompleted callslVerify to continue the
verification process. The messages shown in theImmediate window
confirm that the Service operates as intended.
5-13
Service Developer’s Guide

Exiting TOM Explorer Debugging/Testing Your Service
Exiting TOM Explorer

When you are ready to exit TOM Explorer, selectFile => Exit from its
menu bar and watch as the Service jumps intoOnTerminate .

Step through the remainder of your code and whenOnTerminate completes,
TOM Explorer terminates.
5-14
Brooks Automation

Compiling Your Service—Final CompileDebugging/Testing Your Service

at

y

ou

ble
Compiling Your Service—Final Compile

You can compile your Service as an in-process OLE server or an out-of-
process OLE server.

The differences between the two types of OLE servers are delineated in
Microsoft’sVisual Basic Programmer’s Guide andVisual Basic Professional
Features guide.

Generate DLL To generate the DLL for the Service, go to your Visual Basic project and
selectFile => Make demo.dll .

The DLL file name should use the unique prefix you chose for your
organization. It should ideally be the same as the project name in the
Options window in Visual Basic.

Testing Your Service

To test your Service, you can:

■ Use TOM Explorer—As shown in this chapter.

■ Write your own application to run the Service. If you developed it for a
particular tool, test it with that Tool.

■ Write another Service that calls your Service (like an application), but th
you run from TOM Explorer. This way, you can avoid writing an
application; TOM Explorer becomes the application that runs your
service.

Using Your Service in an Application

To use your service in an application, refer to theTool Object Model (TOM)
Application Developer’s Guide.

N OT E When you compile your service DLL, the compiler automaticall
registers it on the machine you compile it on. However, if you
want to use that DLL on another machine, you must be sure y
register it by hand usingregsvr32.exe.

If you did not setVersion Compatibility to Binary
Compatibility when you created your Visual Basic project
(seeCreating References for Your Project, p. 2-5), when you try to
use your custom Service on another machine, you will not be a
to successfully register the DLL.
5-15
Service Developer’s Guide

INFO

er,
s a
e
the

ply
Reusing Existing Services in Yours: 6
Containment

Introduction

Topics in This Chapter

Here’s the scenario: You’ve been using standard Services to create a driv
but now you find that your piece of equipment has a capability (or require
SECS message) that does not have a corresponding TOM Service. You’v
considered writing that Service from scratch, but it is so similar to one of
standard Services that you want to use that standard Service—maybe sim
modify it. You can do that rather easily by containing the standard Service
within your custom Service code.

This chapter presents how to contain an existing Service inside a custom
Service.

It refers to the container Service provided under
\FASTech\TOM\Dev\Samples\Contain\nv10and the Tool that accompanies it
under\FASTech\TOM\Dev\Samples\Contain\Drivers.

Choosing a Related Standard Service, p. 6-2

Writing the Container Service, p. 6-3

Writing Handler Methods for Low Level Services, p. 6-6

N OT E The complete code for the sample container Service is
included in Appendix B.
6-1
Service Developer’s Guide

Choosing a Related Standard Service Reusing Existing Services in Yours: Containment

ands
 you

e
ing

d
.

d

ent

?

e,
Choosing a Related Standard Service

Suppose your Tool requires a series of commands under a Remote Comm
message. Most of the commands require an S2F21 message, so for them
could use theGemRemoteControl Service, which let’s you set an Attribute
calledUse S2F21 to True or False (see next illustration). You set this
Attribute toTrue and you’re all set, right? Not exactly. One command on th
Tool, PP-SELECT, requires an S7F1 message, one without a correspond
standard TOM Service.

To determine the solution to this type of problem, ask yourself what you
would do if the Tool were entirely compliant with the standard. If you woul
use a particular Service, then that is the Service you should try to contain

In this case, what you really need isGemRemoteControl plus an additional
command, a variation onGemRemoteControl.

So now what do you do? If only you could useGemRemoteControl...

But you actually can use it! You can contain it inside a custom Service an
delegate particular aspects of your Service’s capabilities to it, letting
GemRemoteControl carry out the tasks it knows how to execute. The
remainder of your Service need only handle additional tasks your equipm
requires.

When choosing a related Service, you should identify:

■ What Service would you use if the Tool were entirely SECS compliant

■ What message are you trying to find a Service for?

■ Is there an existing Service that contains most of the capabilities you
need?

If you find a Service that isalmost what you need, you can then contain the
Service whose capabilities you want to emulate inside your custom Servic
as shown in the pages that follow. The resulting Service is essentially a
container for the original Service.
6-2
Brooks Automation

Writing the Container ServiceReusing Existing Services in Yours: Containment

rvice

 a

nd

side
L

et’s
Writing the Container Service

Let’s see how you could write a Service that is a variation on
GemRemoteControl for the piece of equipment presented in the previous
section.

Create Service in
the Database

Initially, you create the container Service the way you would any other:

■ Create the Service in the database. Assign it the same name as the Se
it is based on. In this case, the Service must be named
GemRemoteControl.

■ Assign a uniqueClass name for the Service, such as
NV10GemRemoteControl . The name need only be unique within the
particular Service DLL you are creating, so you can give it the original
Service’s name as long as it is in a separate DLL.

■ Assign a uniqueProvider name for the Service, which should be the
root name of the Visual Basic DLL, in this caseNV10.

■ Assign the Service to the Tool in the database.
■ If the Service requires Attributes, create them in the database. For this

container Service, you need a single Boolean Attribute calledUse
S1F21.

Create Required
Dictionaries

Your container Service may also require access to existing Dictionaries or
unique Dictionary of its own. To handle this situation, you need to:

■ Create your own Dictionaries if you need them—Service Dictionaries a
Resource Dictionaries.

■ Add DataDefs to the Dictionaries

■ Assign Dictionaries to Services

■ Assign Dictionaries to Resources

For details, refer to theTOM Builder User’s GuideHelp file.

Create Handler
Methods for
Service

You need to create the standard handler methods for a container Service:

1. To use the corresponding handler method from the original Service in
your Service, you would begin by referencing the original Service’s DL
in the Visual Basic program by selectingTools => Reference from the
menu bar.

2. Declare a private object of a type based on the original Service. In this
case, the object type isGemRemoteControl .

You can refer to the original Service as a base for the new Service, so l
name the objectm_oBase and declare it using the full path to the Service
in TOM, which is theProvider , dot, theClass :
6-3
Service Developer’s Guide

Writing the Container Service Reusing Existing Services in Yours: Containment

e

t

ice:

l
ly

alls
' Below is the standard service that this one "contains"

Private m_oBase As New tomss2.GemRemoteControl

In a moment, you can use them_oBase object to refer to the handler
methods in the original Service.

3. You then declare theSERVICE_NAMEand the command to be passed to th
Method,METHOD_COMMAND:

' Object names

Private Const SERVICE_NAME = "NV10.NV10GemRemoteControl"

Private Const METHOD_COMMAND = "Command"

4. Create the usual Service reference:

' Objects referenced

Private m_oService As tom.Service ' Service owning Me

5. Inside the new Service’sOnCreate , you need to take all of the actions tha
the original Service takes in itsOnCreate and a few more. You use the
m_oBase object to call theOnCreate handler method from the original
Service, thus executing that handler method within the container Serv

m_oBase.OnCreate Service

6. You can then add custom code to the new Service to complete its
OnCreate handler method.

7. For bothGetAttribute andLetAttribute handler methods, since you
are using only the Attribute from the original Service and no additiona
ones, every time your Service is retrieving or setting an Attribute, it simp
needs to call theGetAttribute or LetAttribute handler method of
the original Service. So each of these handler methods, shown below, c
the corresponding handler methods from the original Service using the
m_oBase object:

Public Function GetAttribute(ByVal AttributeName As String)
As Variant

GetAttribute = m_oBase.GetAttribute(AttributeName)

End Function

Public Sub LetAttribute(ByVal AttributeName As String,
NewValue As Variant)

m_oBase.LetAttribute AttributeName, NewValue

End Sub

The same applies to theOnMethodCompleted andOnVerify handler
methods, shown here:

Public Sub OnMethodCompleted(ByVal Method As tom.Method,
ByVal InvokingMethod As tom.Method)

m_oBase.OnMethodCompleted Method, InvokingMethod

End Sub
6-4
Brooks Automation

Writing the Container ServiceReusing Existing Services in Yours: Containment

the
Public Sub OnVerify(ByVal FullVerification As Boolean)

m_oBase.OnVerify FullVerification

End Sub

None of these Services need do anything more.

8. Inside the sample container Service’sOnExecute , you need to determine
when to take action other than that in the original Service’sOnExecute .
In this example, if the operator is activating a resource, which requires
PP-SELECT command, then you need to take the special action that
forced you to create a new Service. Otherwise, you can call the
OnExecute of the original Service using them_oBase object. The code
for thisOnExecute would be structured as follows:

Public Sub OnExecute(ByVal Method As tom.Method)

' If activating a resource, execute local function,

' otherwise delegate action to contained class.

If Method.Inputs.Item("Commands").Item(1)._
Name = "PP-SELECT" Then

ExecuteS7F1 Method

Else

m_oBase.OnExecute Method

End If

End Sub

TheExecuteS7F1 handler method executes the custom actions in this
container Service.
6-5
Service Developer’s Guide

Writing Handler Methods for Low Level Services Reusing Existing Services in Yours: Containment

),
Writing Handler Methods for Low Level Services

If the container Service you are writing is a low level Service (Level 1 or 2
you may need to write or call the original Service’s protocol level handler
methods that interact with theProtocolSECS Service:

■ OnPrimaryIn

■ OnPrimaryOutError

■ OnSecondaryIn

■ OnSecondaryInError

The sample container Service has anOnSecondaryIn handler method. For
more information on this handler method, refer toSECS Handler Methods
Grouped by Function, p. 5-2, in theTOM Service Developer’s Reference.
6-6
Brooks Automation

INFO
Dealing with Errors 7

Introduction

Topics in This Chapter

This chapter presents how to work with specific TOM objects inside your
handler methods. For instance, it discusses:

Deciding to Raise, Extend, or Trigger an Error, p. 7-2

Extending an Error, p. 7-3

Raising an Error, p. 7-6

Triggering an Error, p. 7-8
7-1
Service Developer’s Guide

Deciding to Raise, Extend, or Trigger an Error Dealing with Errors

e

e
se

ue
ee

ext
ur

 of
n

Deciding to Raise, Extend, or Trigger an Error

If any other type of error occurs at any time in your Service, you send
program control to an error handler. Your error handler can take care of th
error in one of these ways:

■ Extend the error
■ Raise the error
■ Trigger the error

Let’s get a quick definition of each of these actions. It is important to realiz
that in most situations TOM is above your Service in the call stack, becau
usually TOM calls your Service handler methods (such asOnCreate):

■ If you extend an error, you add information to it (as text) and pass that
information along with the error up the call stack. You use this techniq
if a Service your Services uses finds the error. For more information s
Extending an Error, p. 7-3.

■ When you raise an error, you raise a Visual Basic runtime error to the n
highest level, which in this case would be the TOM application using yo
Service. You raise an error if your Service is the first Service to find it
(rather than a lower level Service passing it to yours). For more
information, seeRaising an Error, p. 7-6.

■ If you trigger an error, you create an Error object and trigger it instead
letting TOM take its usual default action. For more information on whe
and why you would take such action, refer toTriggering an Error, p. 7-8.

N OT E Tip — Raising vs. Extending an Error

When should you raise an error instead of extending it?
If you detect the problem within your own Service, you
should raise the error. If you do not raise the error, Visual
Basic assumes you have handled it.

If a lower level Service detects the problem, your
Service shouldnot raise it, but extend it—effectively
passing the error up to the next level. If you do not
percolate the error up, Visual Basic assumes you have
handled it. If you do not handle it and Visual Basic ends
up percolating the error up, it could generate issues later.
7-2
Brooks Automation

Extending an ErrorDealing with Errors

d

l

re

e or
r is
Extending an Error

In most cases, you deal with an error by aborting your handler method an
sending control to an error handler. The error handler then propagates the
error up the call stack. You would do this with an error raised by another
Service used in your Service. Since TOM is above your Service in the cal
stack, the error is extended to TOM. TOM traps the error and takes
appropriate action.

Call
srvExtendError

To extend an error, you call thesrvExtendError handler support routine
from inside your error handler:

On Error Goto ErrorTrap

...

ErrorTrap:

srvExtendError “lComplete”

You use this routine to augment the Visual Basic Err object with custom
information you want passed up the stack. The syntax for the routine is:

Public Sub srvExtendError (RoutineNameAs String, OptionalNumber,_
Optional HelpFile,OptionalHelpContext, Optional Description,
OptionalParams)

■ RoutineName—Name of routine or handler method extending the error.
■ Optional Number—Numeric code of error.
■ Optional HelpFile—Name of Help file containing help for the error.
■ Optional HelpContext—Help context ID of help for the error.
■ Optional Description—String containing description of the error or

number containing the ID of the description in the resource file.
■ OptionalParams—The parameters to insert into the description. For mo

than one, pass them as an array.

Pass Your Handler
Method Name as
Argument

The first argument is required and should contain the name of your routin
handler method. The name gets added to the error description as the erro
propagated up the stack, so you can trace the source of the error.

N OT E Tip—Always Call srvExtendError in Your Error Handler

You can trace the source of any error in your Service as long
as you consistently include an error handler in your handler
method and callsrvExtendError from that error handler.
7-3
Service Developer’s Guide

Extending an Error Dealing with Errors

s.

rr
ou

 the
ndler

e

Use Description
Argument to
Identify Error

All the other arguments are optional. The most commonly used optional
parameter isDescription . This parameter can be a string describing the
error or a number used to locate the error string in the resource (.rc) file
included in your Visual Basic project.

The description string can contain %n parameters (wheren is a digit from 1
through 9). You pass the parameters to substitute for each %n in theParams
argument, as shown in the example below:

ErrorTrap:

srvExtendError “lComplete”

Description:=”The %1 Service found an error using %2 _
resource while the %3 Method was invoking %4 Method”

Params:=Array(m_oService.Name, m_oService.Resource.Name,_
InvokingMethod.Name, Method.Name)

The parameters you pass withParams should always include your Service’s
name, the Resource name, the Method name, and any relevant DataItem

Ensure Err Object
Contains Correct
Information

Because you are extending the error, it is important that the Visual Basic E
object contain the correct information when you extend it. You often find y
need to take other action that could inadvertently clear the Err object and
destroy the error information that you want to report. Visual Basic
automatically clears Err when the object you have created is destroyed at
end of the handler method. The steps you should take inside the error ha
to ensure the Err object remains available are:

1. Save the error state, stored inErr , so that later you can restore the error
state. For instance, you could create a variable namedErrorState of the
t_ErrorState type. You would pass this variable to the
srvSaveErrorState handler support routine. The syntax for that rou-
tine is:

Public Sub srvSaveErrorState(ErrorStateAs t_ErrorState)

The single argument it takes is ErrorState, a t_ErrorState structure.

The error trap would start as follows:

ErrorTrap:

Dim ErrorState As t_ErrorState

srvSaveErrorState ErrorState

2. Destroy the object associated with the error state by setting it toNothing :

Set TheMethod = Nothing

In your Service, the object you created with thesrvCloneMethod or
srvCloneEvent handler support routine is the object you must remov
by setting it toNothing . If you do not remove these objects, they hang
7-4
Brooks Automation

Extending an ErrorDealing with Errors

t

ws,

n,
r

around in memory and could eventually cause problems. If you did no
create any objects, then you can skip this step.

3. Restore the Err object in theErrorState variable using
srvRestoreErrorState :

srvRestoreErrorState ErrorState

4. Extend the error usingsrvExtendError and passing it the name of the
handler method that the error came up in, such asOnExecute :

srvExtendError "OnExecute"

The complete code for the error handler should include the code that follo
only in yours you should replaceMyMethod with the object you created
using eithersrvCloneMethod or srvCloneEvent :

ErrorTrap:

Dim ErrorState As t_ErrorState

srvSaveErrorState ErrorState

‘insert custom error handling code here

Set TheMethod = Nothing

srvRestoreErrorState ErrorState

srvExtendError " Routine "

Another issue to be aware of is code falling through to theErrorTrap
section. Naturally, you do not want this to occur. So, just before this sectio
you might want to have anExit Sub statement to ensure that the code neve
gets here inadvertently.

N OT E Your code should include the lines written below, only it
should replaceTheMethodwith the appropriate object and
Routine with the name of the handler method.
7-5
Service Developer’s Guide

Raising an Error Dealing with Errors

rror

teps

ou
ror

t the
Raising an Error

There are two ways of raising an error—you raise it yourself explicitly, or
another entity raises an error in your code unexpectedly. The unexpected e
is usually raised by Visual Basic or a Service that is using your Service.

You should raise an error when your Service detects an error. The major s
to raising an error are:

1. Disable the error handler

2. CallsrvRaiseError

3. Exit the subroutine

Before you raise an error, you should always disable the error handler thatOn
Error Goto Label has enabled at an earlier time in the program, so that y
don’t end up creating a duplicate stack trace entry for this routine in the er
description. You disable the error handler with:

On Error Goto 0

Then to raise the error, you call thesrvRaiseError handler support routine.
The syntax for that routine is:

Public Sub srvRaiseError (RoutineNameAs String, ByVal Number _
As Long, ByVal HelpContextAs Long, SourceAs String, DescriptionAs _
Variant , Optional HelpFile,OptionalParams)

■ RoutineName—Name of routine raising the error.
■ Number—Numeric code of error.
■ HelpContext—Help context ID of help for the error.
■ Source—Name of the OLE server object raising the error.
■ Description—String containing description of the error or number

containing the ID of the description in the resource file.
■ HelpFile—Name of Help file containing help for the error.
■ Params—The parameters to insert into the description. For more than

one, pass them as an array.

When you raise the error, you set theRoutineName to the name of the
subroutine or function that detected the problem, such asOnExecute , and fill
in the other arguments as appropriate. Remember the SERVICE_NAME
constant you set when you first began creating the Service? Here, you se
Source argument to it:

' Error if the Event did not occur

srvRaiseError RoutineName:="OnExecute", _

Number:=999, _

HelpContext:=34000 + TOTAL, _
7-6
Brooks Automation

Raising an ErrorDealing with Errors

s.
Source:=SERVICE_NAME, _

Description:=”The %1 Service found an error using %2 _
resource while %3 method was invoking %4 method”

HelpFile:=myHelpFile.hlp, _

Params:=Array(m_oService.Name, m_oService.Resource.Name,_
InvokingMethod.Name, Method.Name)

Exit Sub

The parameters you pass withParams should always include your Service’s
name, the Resource name, the Method name, and any relevant DataItem

After raising an error, you might want to exit the subroutine.
7-7
Service Developer’s Guide

Triggering an Error Dealing with Errors

n

ur
ror

or

e of

r

u do
t

r for
Triggering an Error

The last way to deal with an error is to create an Error object and trigger
notification in a TOM application. Two situations where you might trigger a
Error object are:

■ An error comes in to your Service from the outside. In this situation, yo
Service is at the top of the call stack. In this case you must trap the er
and, in most cases, you should trigger an Error object.

■ When your Service encounters an error while executing a Method and
you want to raise the error but do not want to terminate the Method.

Receiving an Error
from the Outside

If an error comes from outside your Service, you should trigger the error f
the application using your Service. For instance, suppose a piece of
equipment sends up an error through an ActiveX control. Because this typ
error occurs asynchronously, you cannot handle it inOnExecute ,
OnSubscribedEvent , or any other handler method TOM calls. TOM isn’t
active and isn’t calling any handler methods, because only your Service
knows about the error. In this situation, you set up a private routine in you
Service that an ActiveX can call.

At the top of the private routine, you should haveOn Error Resume Next
followed by a call to a special error handler, such aslErrorEvent . This way
you guarantee that the error is not propagated up the call stack because yo
not go to an error trap label. Below is an example of how you call an even
handler namedlErrorEvent for theEquipCtrl control:

Private Sub EquipCtrl_Error()

On Error Resume Next

lErrorEvent

Exit Sub

Inside the error handler, you generate an Error object and trigger the Erro
the application using your Service (such as TOM Explorer). You use
srvTriggerError to take both of those actions.

N OT E Tip—From Top of Call Stack, You Must Handle Errors

When an error occurs, and your Service is at the top of the
call stack, you must trap these errors and not allow them to
propagate upward. If an event handler raises an error and you
do not trap it, the entire TOM application may terminate!
7-8
Brooks Automation

Triggering an ErrorDealing with Errors

.

ion
The syntax of this routine is as follows:

Public SubsrvTriggerError (Service As tom.Service, _
ByVal ErrorCode As Long, _
ByVal HelpContext As Long, _
ByVal Source As String, _
ByVal ErrorText As Variant, _
OptionalHelpFile, _
OptionalErrorObject, _
OptionalParams)

You can pass parameters to the routine, just as you would with
srvRaiseError or srvExtendError (seeRaising an Error, p. 7-6, or
Extending an Error, p. 7-3).

In the error handler, after you take any action you’d like to take in your
Service, you callsrvTriggerError :

Private Sub lErrorEvent()

On Error Goto ErrorTrap

‘Deal with the error event here

Exit Sub

srvTriggerError m_oService, _
ErrorCode:=20039, _
HelpContext:=70039, _
Source:=SERVICE_NAME, _
ErrorText:=10039, _
HelpFile:=“MyHelpFile.hlp”

End Sub

The TOM application’sEvrrorNotification routine receives the error
notification and receives the Error object as an argument.

For more information on theErrorNotification routine, refer to the TOM
Help file.

Trigger Error
Your Service
Encounters, but
Resume Method
Action

If your Service encounters an error, you would usually raise that error.
Sometimes, however, raising an error can terminate a Method in progress

To avoid terminating the Method, you can trigger the Error for the applicat
using your Service and continue with the Method action.

In this case, you can also usesrvTriggerError .
7-9
Service Developer’s Guide

INFO

g a
Creating Service to Initialize Tool 8

Introduction

Topics in This Chapter

You want to start a Tool by taking the following actions:

■ Start logging
■ Open the port
■ Establish communication with the Tool

This chapter presents how to write a Service that takes these actions usin
single custom Method.

The Service is provided under\FASTech\Sw\Dev\Samples\StartTool\init.vbp
and its Tool is under\FASTech\Sw\Dev\Samples\StartTool\Drivers\GenTool.

Planning the Approach, p. 8-2

Create Constants and References in Declarations, p. 8-3

Creating Method Object in OnCreate, p. 8-3

Checking Required Services in OnInitialize, p. 8-3

Subscribing to Events in OnInitialize, p. 8-4

Setting Up TOM Notifications, p. 8-4

Starting the StartTool Method in OnExecute, p. 8-4

Continuing to Chain Methods in OnMethodCompleted, p. 8-5

Executing Last Method in OnSubscribedEvent, p. 8-6

Creating the Service DLL, p. 8-7

Creating Service, Tool, Dictionaries in Database, p. 8-7

Running Service in Visual Basic Debugger, p. 8-8

N OT E The complete code for the sample container Service is
included in Appendix F.
8-1
Service Developer’s Guide

Planning the Approach Creating Service to Initialize Tool

ify
se
only

ss,
uld

ich

 in
n

t.
Planning the Approach

To create a new custom Service that would start a Tool, you need to ident
the Services whose Methods you’ll need to clone and execute to take tho
actions. In this case, the Services and corresponding Methods are comm
used ones:

■ Start logging—LOLogging Service’sStop andStart Methods.

■ Open the port—ProtocolSECS Service’sClose andOpen Methods.

■ Establish communication with the Tool—GemEstablishCommunications
Service’sConnect Method.

Why do you need bothStop andStart from LOLogging? Because before
you can start logging, you have to be sure logging is not already in progre
because if it is, you receive an error. So, before you start logging, you sho
stop logging. This technique circumvents the possibility of that error.

The same is true for theClose andOpen Methods ofProtocolSECS. To be
sure the port is not already open, you close it first,then open it.

Plan to Chain
Methods

To clone and execute several Methods in sequence, you need to know wh
Method is to be executed next. The sequence you want to follow is:

■ Stop

■ Start

■ Close

■ Open

■ Connect

When you clone and execute the first Method, you can set itsTag property to
the clone of the next Method to execute. You write the code for this action
later in theOnExecute andOnMethodCompleted handler methods.

Plan to Respond
to Events

When you execute theOpen Method, it generates aConnect Event from the
Tool. Because you need to respond to this event, you don’t need a section
OnMethodCompleted for whenOpen completes; instead, you need a sectio
in OnSubscribedEvent for theConnect Event, which occurs after you
executeOpen, but not necessarily immediately after. The Event is
asynchronous, so you must wait for the event before proceeding.

Similarly, when you execute theConnect Method of
GemEstablishCommunications, you also must subsequently wait for an Even
Two possible Events can occur:

■ Established communications

■ Changed
8-2
Brooks Automation

Planning the ApproachCreating Service to Initialize Tool

hey

, so
TheChanged Event occurs when the setting ot theCommunicating attribute
of GemEstablishCommunications changes.

Create Constants and References in Declarations

So, in theDeclarations section of your Visual Basic code, you would
establish the constants for these Services as well as any of the Services t
depend on, such asGemIdentification andProtocolTimer:

Private Const SRV_PROTOCOLSECS = "ProtocolSECS"

Private Const SRV_GEMESTABCOMMS = "GemEstablishCommunications"

Private Const SRV_GEMIDENTIFICATION = "GemIdentification"

Private Const SRV_LOLOGGING = "LOLogging"

Private Const SRV_PROTTIMER = "ProtocolTimer"

In addition, you’ll need a reference to your Service:

' References

Private m_oService As tom.Service 'Service that owns this class

Later, you need a global reference to the custom Method you are creating
that you can refer to it inside theOnSubscribedEvent handler method. You
create this reference in theDeclarations also:

' Global reference to a custom Method

Private m_StartTool As tom.Method

Creating Method Object in OnCreate

In OnCreate , you need to create the Method object for your custom
StartTool Method.

 ' Here is the StartTool Method Object

Set StartTool = srvDefineMethod(m_oService, METH_START,
"StartTool Method")

Checking Required Services in OnInitialize

In OnInitialize , you check to be sure each required service is present:

srvRequiredService m_oService, SRV_PROTOCOLSECS

srvRequiredService m_oService, SRV_GEMESTABCOMMS

srvRequiredService m_oService, SRV_GEMIDENTIFICATION

srvRequiredService m_oService, SRV_LOLOGGING

srvRequiredService m_oService, SRV_PROTTIMER
8-3
Service Developer’s Guide

Planning the Approach Creating Service to Initialize Tool

ter

n by
Subscribing to Events in OnInitialize

Also in OnInitialize , you subscribe to the events you plan to react to la
in OnSubscribedEvent :

' Event occurs when you execute the Open Method of ProtocolSECS:

srvSubscribeEvent m_oService, SRV_PROTOCOLSECS, "Connect"

' One of two Events occur when you execute Connect Method of
' GemEstablishCommunications:

srvSubscribeEvent m_oService, SRV_GEMESTABCOMMS, "Established
communications"

srvSubscribeEvent m_oService, SRV_GEMESTABCOMMS, "Changed"

Setting Up TOM Notifications

To complete theOnInitialize hander method, you set whether or not TOM
or other Services require notification by usingsrvSetEventNotification
and passing eithertomNotifyAlways or tomNotifyNever as an argument:

srvSetEventNotification m_oService, SRV_PROTOCOLSECS, "Connect",
tomNotifyAlways

srvSetEventNotification m_oService, SRV_GEMESTABCOMMS,
"Established communications", tomNotifyAlways

srvSetEventNotification m_oService, SRV_GEMESTABCOMMS,
"Changed", tomNotifyAlways

Starting the StartTool Method in OnExecute

In OnExecute , you start by constructing aCase statement that has code for
each Method the operator can choose from the TOM Explorer or IDE
Browser. In one case, you would create code for theStartTool Method, as
explained in the remainder of this section.

Here, you begin the Method chaining process. Since you are going to begi
cloning and executing theStop Method, you then clone and execute the
Start Method and put it in theStop Method object’sTag property:

Set MethodToExec = srvCloneMethod(m_oService, "Stop",
SRV_LOLOGGING)

Set MethodToExec.Tag = srvCloneMethod(m_oService, "Start",
SRV_LOLOGGING)

After these steps, you need to set theInvokingMethod , which is
StartTool . TOM passes this Method toOnMethodCompleted , so that it
knowsStartTool was the Method from the TOM Explorer or IDE Browser
that invokedStop :

Set InvokingMethod = ExecuteMethod
8-4
Brooks Automation

Planning the ApproachCreating Service to Initialize Tool

he
Although TOM passes theInvokingMethod to OnMethodCompleted ,
since it doesn’t pass that same information toOnSubscribedEvent , you
need to set the global Method object you created forStartTool to the
invoking method. Later,OnSubscribedEvent can use this Method object to
determine what the invoking Method is:

Set m_StartTool = InvokingMethod 'for use by OnSubscribedEvent

Finally, the last step inOnExecute is to execute theStop Method:

srvExecute MethodToExec, m_oService, InvokingMethod

This Method is the only one you start inOnExecute . When theStop Method
completes, TOM jumps in toOnMethodCompleted , where it can then
execute the next Method.

Continuing to Chain Methods in OnMethodCompleted

In OnMethodCompleted , you can continue the Method chaining you began
in OnExecute . Again, you generate aCase statement for each Method that
can be completing:

Case "Stop"

'This is completion of the LOLogging Stop Method to ensure no
'error on initiating logging.

Set MethodToExec = CompletedMethod.Tag
'Gets Start method from tag of Stop method

Set MethodToExec.Tag = srvCloneMethod(m_oService, "Close",
SRV_PROTOCOLSECS) 'Sets tag to the next method, Close

srvExecute MethodToExec, m_oService, InvokingMethod

Case "Start"

'This is completion of the LOLogging Start Method.

Set MethodToExec = CompletedMethod.Tag
'Gets Close method from tag of Start method

Set MethodToExec.Tag = srvCloneMethod(m_oService, "Open"),
SRV_PROTOCOLSECS) 'Sets tag to the next method, Open

srvExecute MethodToExec, m_oService, InvokingMethod

Case "Close"

'This is completion of the ProtocolSECS Close method to ensure
no 'error when executing the Open method.

Set MethodToExec = CompletedMethod.Tag
'Gets Open method from tag of Close method

srvExecute MethodToExec, m_oService, InvokingMethod

For the case ofClose , you get theOpen Method from the tag and then
execute it. You do not set the tag to the next method to excute, because t
Service needs to execute that method isOnSubscribedEvent rather than in
OnMethodCompleted .
8-5
Service Developer’s Guide

Planning the Approach Creating Service to Initialize Tool

f the

kes
For the cases ofOpen andConnect , you can take all action when the
associated event occurs, so you need not handle the completion of these
Methods inOnMethodCompleted , but you can have markers for them that
indicate what is going on:

Case "Open"

'After the Open Method, Service waits for Connect Event.

Case "Connect"

'After the Connect Method, Service waits for the Established
communications or Changed Event.

Executing Last Method in OnSubscribedEvent

When theConnect Event occurs in response to opening the port, you can
take action in response to that Event that executes the final Method, the
Connect Method ofGemEstablishCommunications:

Case "Connect"

'Received notification of Connect Event from ProtocolSECS

'Completing StartTool Method's Opening of Port

srvGetService(m_oService,
SRV_GEMESTABCOMMS).Attributes.Item("Interval").Value = 5

Set MethodToExec = srvCloneMethod(m_oService, "Connect",
GEMESTABCOMMS)

srvExecute MethodToExec, m_oService, m_StartTool

You need to set theInterval Attribute of theGemEstablishCommunications
Service to a number other than 0 so that the Service refreshes the values o
other Attributes, especially theCommunicating Attribute. Otherwise, if that
Attribute changes, it may not evoke theChanged Event.

Once you have executed theConnect Method, since you have subscribed to
the possible Events it can evoke, you should establish a single case in
response to either one of them occurring:

Case "Established communications", "Changed"

'Received notification that Communication with Tool

'established. StartTool Method has communicated with Tool

SinceConnect is the last Method to execute, after one of the events it evo
occurs, theStartTool Method is complete and you need to execute
srvComplete on it using the global Method object you established for it,
m_StartTool :

If Not m_StartTool Is Nothing Then

srvCompleted m_StartTool

Set m_StartTool = Nothing
8-6
Brooks Automation

Planning the ApproachCreating Service to Initialize Tool

ve
t,

 the

Tool.

ol

nd
End If

It is a bit different to be executingsrvComplete in OnSubscribedEvent
rather than inOnMethodCompleted . Remember that to execute
srvComplete here, you still have to pass it the invoking Method, but to ha
that Method available, you must have created a global Method object for i
just as this example does forStartTool .

Creating the Service DLL

Create the Service’s .dll so that its .tbf file appears in the list of Services in
TOM Builder and you can easily assign it to the Tool.

Before you can use the Service, you must create the Service, its Tool, and
associated Dictionaries in the database, in the next section.

Creating Service, Tool, Dictionaries in Database

For this new Service, you need a new Tool. The Tool is provided under the
Drivers directory for this Service. It is calledGenTool.tbf and its Resource is
calledGenRes.tbf. This Tool already has aStartTool Method, so you do not
have to create a Tool from scratch unless you want to practice creating a

You should, however, build the database that contains theGenTool and use
that database when you run this sample Service.

You can create a Tool in TOM Builder, just as you created the Stepper To
earlier in this manual:

■ Create a new Tool.

■ Create a new Resource and assign it to the Tool.

■ Create the Service.

■ Create your own Dictionaries if you need them—Service Dictionaries a
Resource Dictionaries.

■ Add DataDefs to the Dictionaries.

■ Assign Dictionaries to Services.

■ Assign Dictionaries to Resources.

For details, refer to the chapter onCreating a Tool for Your Service or the
TOM Builder User’s GuideHelp file.

After you create the Tool, you can run an instance of it in TOM Explorer.
8-7
Service Developer’s Guide

Running Service in Visual Basic Debugger Creating Service to Initialize Tool

e

 con-

 to
 of
he

e

Running Service in Visual Basic Debugger

You can run the Service in the Visual Basic debugger just as you did for th
demo.sample Service earlier in this manual:

1. Create a shortcut to TOM Explorer and set it operate on the database
taining the generic tool for this Service.

2. Go to the Visual Basic menu bar and selectRun => Start with Full
Compile to compile the Service.

3. Notice that nothing seems to be happening. To see theImmediate
window appear, start TOM Explorer from the shortcut you created.

4. In the TOM Explorer menu bar, selectFile => Create Tool object
... To run theinit.sample2Service, selectGenTool from the list of Tools
that appears.

5. To see communication with the Tool actually be established, you need
have a similator or actual Tool running and set the following Attributes
theProtocolSECSService to match those of the appropriate settings in t
simulator/Tool:

(The settings will vary depending on your simulator. The settings given
here are for an HSMS port type, which requires HSMS related attribut
settings.)

◆ AutoOpen = False
◆ ConnectionMode = 0
◆ IPAddressLocal
◆ IPAddressRemote
◆ IPPortLocal
◆ IPPortRemote

For an HSMS port type:

◆ HSMST3
◆ HSMST5
◆ HSMST6
◆ HSMST7
◆ HSMST8

◆ PortType = 1
8-8
Brooks Automation

Running Service in Visual Basic DebuggerCreating Service to Initialize Tool
8-9
Service Developer’s Guide

Running Service in Visual Basic Debugger Creating Service to Initialize Tool
6. Expand thesample2 Service under theGenRes Resource and you see the
StartTool Method underMethods . STmeth.pcx

7. Right click on and execute theStartTool Method.

Look in the lower left corner of the TOM Explorer at the status bar and
you see messages indicating it is cloning and executing methods of
various Services.

8. Click theMethods tab of TOM Explorer to see theStartTool Method
has been executed.tabmeths.pcx
8-10
Brooks Automation

Running Service in Visual Basic DebuggerCreating Service to Initialize Tool

he
9. Click theEvents tab to see the TOM Events that have occurred.
tabevts.pcx

10. You can also see some indication of what is happening by looking in t
Immediate window, where the debug messages print.immedwin.pcx
8-11
Service Developer’s Guide

Running Service in Visual Basic Debugger Creating Service to Initialize Tool
8-12
Brooks Automation

INFO
Template/Sample Service Code A

Introduction

This appendix lists the code for the template Service’s class, from the
sample.cls file.
A-1
Service Developer’s Guide

Complete Code for the Service Template/Sample Service Code
Complete Code for the Service

Option Explicit

' Object Names

Private SERVICE_NAME As String

Private Const SRV_LOOPBACK = "SecsLoopbackDiagnostic"

Private Const SRV_PROTOCOLSECS = "ProtocolSECS"

'Boolean that indicates whether or not Full Verification is on

Private m_oFullVerfication As Boolean

'DataDef names

Private Const DD_DD1 = "DataDef1"

Private Const DD_CHILDA = "ChildDataDefA"

Private Const DD_CHILDB = "ChildDataDefB"

Private Const DD_DD2 = "DataDef2"

Private Const ATT_EVENT_ENABLED = "ToolEventEnable"

Private Const METH_METHOD1 = "Method 1"

Private Const METH_METHOD2 = "Method 2"

Private Const METH_METHOD3 = "Method 3"

Private Const EVENT_CONNECT = "Connect Event"

' Attributes of Service

Private Att_ToolEventEnable As String

' Constants for sequence of verification

Private Const CaseStep1 = 1

Private Const CaseStep2 = 2

Private Const CaseStep3 = 3

Private Const CaseEnd = 4

' References

Private m_oService As tom.Service 'Service that owns this class

Private m_oLoopback As tom.Service 'Another Service this one accesses

Private m_oProtocolSECS As tom.Service

Public Sub OnCreate(ByVal Service As tom.Service)

Dim ServiceSpecificDataDef As tom.DataDef

Dim ToolEvent As tom.Event

Dim DataItemOutput As tom.DataItem

Dim DataItemInput As tom.DataItem

Dim DataDef1 As tom.DataDef

Dim DataDef2 As tom.DataDef

Dim ChildDataDefA As tom.DataDef

Dim ChildDataDefB As tom.DataDef

Dim Method1 As tom.Method
A-2
Brooks Automation

Complete Code for the ServiceTemplate/Sample Service Code
Dim Method2 As tom.Method

Dim Method3 As tom.Method

' Save Service reference

Set m_oService = Service

Debug.Print "Entering OnCreate"

' Retrieve your Sevice Specific area in the Dictionary

Set ServiceSpecificDataDef = srvServiceDataDef(m_oService)

' Here is an how to load child DataDefs into your Service Specific area

Set DataDef1 = srvLoadDataDef(m_oService, srvServiceDataDef(m_oService),_
"DataDef1")

Set ChildDataDefA = srvLoadDataDef(m_oService, DataDef1, "ChildDataDefA")

Set ChildDataDefB = srvLoadDataDef(m_oService, DataDef1, "ChildDataDefB")

Set DataDef2 = srvLoadDataDef(m_oService, srvServiceDataDef(m_oService),_
"DataDef2")

' Here is how to define a Method object

' This method is Method1

Set Method1 = srvDefineMethod(m_oService, METH_METHOD1, "A Sample Method")

Set DataItemInput = srvAddDataItem(m_oService, Method1.Inputs,_
ServiceSpecificDataDef.Item("DataDef1"))

' Here is a second Method object

' This method is Method2

Set Method2 = srvDefineMethod(m_oService, METH_METHOD2, "A Second Sample Method")

' Here is a third Method object

' This method is Method3

Set Method3 = srvDefineMethod(m_oService, METH_METHOD3, "A Third Sample Method")

' Here is how to define Event objects

Set ToolEvent = srvDefineEvent(m_oService, EVENT_CONNECT, "A sample event")

Set DataItemOutput = srvAddDataItem(m_oService, ToolEvent.Outputs, _
ServiceSpecificDataDef.Item("DataDef2"))

Debug.Print "Leaving OnCreate"

End Sub

Private Sub Class_Initialize()

 SERVICE_NAME = App.Title + TypeName(Me)

End Sub

Public Sub LetAttribute(ByVal AttributeName As String, NewValue As Variant)

 Debug.Print "Entering LetAttribute"

 Select Case AttributeName

 Case ATT_EVENT_ENABLED

 Att_ToolEventEnable = NewValue
A-3
Service Developer’s Guide

Complete Code for the Service Template/Sample Service Code
 Case Else

 Debug.Print "Cannot set ", AttributeName

 End Select

 Debug.Print "Leaving LetAttribute"

End Sub

Public Function GetAttribute(ByVal AttributeName As String) As Variant

 Debug.Print "Entering GetAttribute"

 Select Case AttributeName

 Case ATT_EVENT_ENABLED

 GetAttribute = Att_ToolEventEnable

 Case Else

 Debug.Print "No such attribute exists, ", AttributeName

 End Select

 Debug.Print "Attribute is ", AttributeName

 Debug.Print "Leaving GetAttribute"

End Function

Public Sub OnInitialize()

Dim localAttribute As String

Debug.Print "Entering OnInitialize"

' Perform initialization that must happen after Attributes are

' set and/or other services are started.

' Here is how to check to be sure a required service is present

' If the service is present, it is registered in the NT registry

srvRequiredService m_oService, SRV_LOOPBACK

srvRequiredService m_oService, SRV_PROTOCOLSECS

' Generate References to other services this service works with

Set m_oLoopback = srvGetService(m_oService, SRV_LOOPBACK)

Set m_oProtocolSECS = srvGetService(m_oService, SRV_PROTOCOLSECS)

' Check that no incompatible services are running

' srvIncompatibleService m_oService, ANYSERVICECONSTANT

' Subscribe to events your service requires

srvSubscribeEvent m_oService, SRV_PROTOCOLSECS, "Connect"

' Set whether or not other services require notification

' Pass this handler support routine tomNotifyAlways or tomNotifyNever

srvSetEventNotification m_oService, SRV_PROTOCOLSECS, "Connect", tomNotifyAlways

'Make use of an attribute in OnInitialize rather than in OnCreate

Debug.Print "Leaving OnInitialize"

End Sub
A-4
Brooks Automation

Complete Code for the ServiceTemplate/Sample Service Code
Public Sub OnExecute(ByVal ExecuteMethod As tom.Method)

Dim MethodToExec As tom.Method

Dim InvokingMethod As tom.Method

Debug.Print "Entering OnExecute"

On Error GoTo ErrorTrap

Select Case ExecuteMethod.Name

Case METH_METHOD1

Debug.Print "Method 1 Executing"

Debug.Print " ChildDataDefA: " & ExecuteMethod.Inputs.Item("DataDef1")._
Item("ChildDataDefA").Value

Debug.Print " ChildDataDefB: " & ExecuteMethod.Inputs.Item("DataDef1")._
Item("ChildDataDefB").Value

Set MethodToExec = srvCloneMethod(m_oLoopback, "Test")

MethodToExec.Inputs.Item("ABS").Value =_
ExecuteMethod.Inputs.Item("DataDef1").Item("ChildDataDefA").Value

Set InvokingMethod = ExecuteMethod

srvExecute MethodToExec, m_oService, InvokingMethod

Case METH_METHOD2

Debug.Print "Method 2 Executing"

Set MethodToExec = srvCloneMethod(m_oService, METH_METHOD3)

Set InvokingMethod = ExecuteMethod

srvExecute MethodToExec, m_oService, InvokingMethod

Case METH_METHOD3

Debug.Print "Method 3 Executing"

srvCompleted ExecuteMethod

End Select

Debug.Print "Leaving OnExecute"

Exit Sub

ErrorTrap:

Dim ErrorState As t_ErrorState

srvSaveErrorState ErrorState

Set ExecuteMethod = Nothing

srvRestoreErrorState ErrorState

srvExtendError "OnExecute"

End Sub

Public Sub OnMethodCompleted(ByVal CompletedMethod As tom.Method, ByVal InvokingMethod
As tom.Method)

Debug.Print "Entering OnMethodCompleted", CompletedMethod.Name

If InvokingMethod Is Nothing Then

' Do Verification

lVerify CompletedMethod.Tag
A-5
Service Developer’s Guide

Complete Code for the Service Template/Sample Service Code
Else

' Take actions that should occur after method completes

lCompleted CompletedMethod, InvokingMethod

End If

Debug.Print "Leaving OnMethodCompleted"

End Sub

Private Sub lVerify(Index As Variant)

Dim VerifyingMethod As tom.Method

Dim ExecuteMethod As tom.Method

On Error GoTo ErrorTrap

Select Case Index

Case CaseStep1

Set VerifyingMethod = srvCloneMethod(m_oService, METH_METHOD1)

VerifyingMethod.Tag = CaseStep2

Case CaseStep2

Set VerifyingMethod = srvCloneMethod(m_oService, METH_METHOD2)

If m_oFullVerfication Then

VerifyingMethod.Tag = CaseStep3

Else

VerifyingMethod.Tag = CaseEnd

End If

Case CaseStep3

Set VerifyingMethod = srvCloneMethod(m_oService, METH_METHOD3)

VerifyingMethod.Tag = CaseEnd

Case CaseEnd

srvVerified m_oService

Exit Sub

End Select

srvExecute VerifyingMethod, m_oService, Nothing

ErrorTrap:

Dim ErrorState As t_ErrorState

srvSaveErrorState ErrorState

Set ExecuteMethod = Nothing

srvRestoreErrorState ErrorState

srvExtendError "lVerify"

End Sub
A-6
Brooks Automation

Complete Code for the ServiceTemplate/Sample Service Code
Private Sub lCompleted(ByVal CompletedMethod As tom.Method, ByVal InvokingMethod As
tom.Method)

Dim FinishedSteps As Boolean

Dim ExecuteMethod As tom.Method

If (CompletedMethod.Error.ErrorCode <> 0) Then

srvCompleted InvokingMethod, FailedMethod:=CompletedMethod

FinishedSteps = False

Debug.Print "Method Failed: ", InvokingMethod.Name

Else

Select Case CompletedMethod.Name

Case "Test"

Debug.Print "Completing Test"

srvCompleted InvokingMethod

Case "Method 3"

Debug.Print "Completing Method 3"

srvCompleted InvokingMethod

End Select

End If

End Sub

Public Sub OnVerify(ByVal FullVerification As Boolean)

 Debug.Print "Entering OnVerify"

 m_oFullVerfication = FullVerification

 lVerify CaseStep1

 Debug.Print "Leaving OnVerify"

End Sub

Public Function Version() As String

 Debug.Print "Entering Version"

 Version = srvVersion

 Debug.Print "Leaving Version"

End Function

Public Sub OnTerminate()

 Debug.Print "Entering OnTerminate"

 Set m_oService = Nothing

 Set m_oLoopback = Nothing

 Set m_oProtocolSECS = Nothing

 Debug.Print "Leaving OnTerminate"

End Sub

Public Sub OnSubscribedEvent(ByVal TomEvent As tom.Event)

Debug.Print "Entering OnSubscribedEvent"

On Error GoTo ErrorTrap
A-7
Service Developer’s Guide

Complete Code for the Service Template/Sample Service Code
Dim NewEvent As tom.Event

If m_oService.Attributes.Item(ATT_EVENT_ENABLED).Value = "True" Then

Set NewEvent = srvCloneEvent(m_oService, EVENT_CONNECT)

Debug.Print NewEvent.Name

If TomEvent.Name = "Connect" Then

NewEvent.Outputs.Item("DataDef2").Value = TomEvent.Description

srvTriggerEvent NewEvent

End If

Else

Debug.Print "ToolEventEnable is False"

End If

Debug.Print "Leaving OnSubscribedEvent"

Exit Sub

ErrorTrap:

Dim ErrorState As t_ErrorState

srvSaveErrorState ErrorState

Set NewEvent = Nothing

srvRestoreErrorState ErrorState

srvExtendError "OnSubscribedEvent"

End Sub

Private Sub Class_Terminate()

 Me.OnTerminate

End Sub
A-8
Brooks Automation

INFO
Container Service Code B

Introduction

This appendix lists the code for the container Service, from thenv10.vbp file,
which contains theGemRemoteControl container Service presented in
Chapter 6.
B-1
Service Developer’s Guide

Complete Code for Container Service Container Service Code
Complete Code for Container Service

Option Explicit

' NV10

' This equipment handles resource-active differently.

' Instead of using remote commands, the equipment uses S7S1.

' This service "contains" a standard tomss2.GemRemoteControl

' object, and delegate most of functionality to it.

' it intercepts the OnExecute method, and uses S7S1 if

' the user is trying to active a resource. Otherwise, it

' delegates to GemRemoteControl, which uses S2F41 to send remote

' commands.

' Below is the standard service that this one "contains"

Private m_oBase As New tomss2.GemRemoteControl

' Object names

Private Const SERVICE_NAME = "NV10.NV10GemRemoteControl"

Private Const METHOD_COMMAND = "Command"

' Objects referenced

Private m_oService As tom.Service ' Service owning Me

Private m_oProtocol As Object ' SECS protocol handler

Private Sub Class_Terminate()

 Me.OnTerminate

End Sub

Public Sub OnTerminate()

 Set m_oService = Nothing

 Set m_oProtocol = Nothing

 Set m_oBase = Nothing

End Sub

Public Function Version() As String

 Version = srvVersion

End Function

Public Sub OnCreate(ByVal Service As tom.Service)

 Dim Trans As SecsTransaction

 Dim List As SecsItem

 ' This is where you create your "contained class"

 ' by executing the OnCreate handler method of that class

 m_oBase.OnCreate Service
B-2
Brooks Automation

Complete Code for Container ServiceContainer Service Code
 ' Save Service reference

 Set m_oService = Service

 ' Get our protocol Handler

 Set m_oProtocol = srvGetHandler(m_oService, "ProtocolSECS")

 ' srvLoadDataDef m_oService, Nothing, "SECS elements"

 Set Trans = secsDefineTransaction(m_oService, m_oProtocol, 7, 1)

 Trans.Primary.Description = "Host command send"

 Set List = secsAppendList(Trans.Primary.Root)

 secsAppendItem m_oService, List, "RCMD"

 Set List = secsAppendList(List)

 Set List = secsAppendList(List, Name:="Parameter")

 secsAppendItem m_oService, List, "CPNAME"

 secsAppendItem m_oService, List, "CPVAL"

 Trans.Secondary.Description = "Host command acknowledge"

 Set List = secsAppendList(Trans.Secondary.Root)

 secsAppendItem m_oService, List, "HCACK", Value:=CByte(0)

 Set List = secsAppendList(List)

 Set List = secsAppendList(List, Name:="Parameter")

 secsAppendItem m_oService, List, "CPNAME"

 secsAppendItem m_oService, List, "CPACK"

End Sub

Public Function GetAttribute(ByVal AttributeName As String) As Variant

 GetAttribute = m_oBase.GetAttribute(AttributeName)

End Function

Public Sub LetAttribute(ByVal AttributeName As String, NewValue As Variant)

 m_oBase.LetAttribute AttributeName, NewValue

End Sub

Public Sub OnMethodCompleted(ByVal Method As tom.Method, ByVal InvokingMethod As
tom.Method)

 m_oBase.OnMethodCompleted Method, InvokingMethod

End Sub

Public Sub OnVerify(ByVal FullVerification As Boolean)

 m_oBase.OnVerify FullVerification

End Sub

Public Sub OnExecute(ByVal Method As tom.Method)

 ' If user is activating a resource, then switch to a local function,

 ' otherwise delegate to base class.

 If Method.Inputs.Item("Commands").Item(1).Name = "PP-SELECT" Then

 ExecuteS7F1 Method
B-3
Service Developer’s Guide

Complete Code for Container Service Container Service Code
 Else

 m_oBase.OnExecute Method

 End If

End Sub

Public Sub ExecuteS7F1(Method As tom.Method)

 Dim Trans As SecsTransaction

 Dim i As Long

 Dim CPs As tom.DataItem

 Dim CP As SecsItem

 Set Trans = secsNewTransaction(m_oService, m_oProtocol, 7, 1)

 Set CPs = Method.Inputs.Item(1).Item(1)

 Trans.Primary.Item("RCMD") = CPs.DataDef.AccessID

 If CPs.Count = 0 Then

 Trans.Primary.Item("Parameter").Delete

 Else

 For i = 2 To CPs.Count

 Trans.Primary.Item("Parameter").Duplicate

 Next i

 For i = 1 To CPs.Count

 Set CP = Trans.Primary.Item("Parameter", i)

 CP.Item("CPNAME").Value = CPs.Item(i).DataDef.AccessID

 lSetCPVal CP.Item("CPVAL"), CPs.Item(i)

 Next i

 End If

 If secsSimulate(m_oProtocol) Then

 Trans.Secondary.Item("Parameter").Delete

 End If

 secsSend m_oService, m_oProtocol, Method, Trans

End Sub

Public Sub OnSecondaryIn(ByVal Method As tom.Method, ByVal Trans As SecsTransaction)

 Dim ACK As Long

 If Trans.Primary.Function = 1 Then

 ACK = secsItemAsLong(secsGetItem(Trans.Secondary, "HCACK"))

 ' Ack code 4 is OK for S2F41

 If (ACK = 0) Or (ACK = 4) Then

 srvCompleted Method

 Else

secsCompletedWithAck Method, Trans.Secondary, secsGetItem(Trans.Secondary, "HCACK")

 End If
B-4
Brooks Automation

Complete Code for Container ServiceContainer Service Code
 End If

 srvCompleted Method

End Sub

Private Sub lSetCPVal(SItem As SecsItem, DItem As tom.DataItem)

 On Error GoTo ErrorTrap

 Dim i As Long

 Dim ChildSItem As SecsItem

 SItem.Value = DItem.Value

 SItem.Format = secsFormat(DItem.DataDef)

 For i = 1 To DItem.Count

 Set ChildSItem = SItem.AddNew(SItem.ItemCount + 1)

 ChildSItem.Name = "CPVAL"

 lSetCPVal ChildSItem, DItem.Item(i)

 Next i

 Exit Sub

ErrorTrap:

 srvExtendError "lSetCPVal"

End Sub
B-5
Service Developer’s Guide

INFO

ded

n

, and

,

n

Developing Equipment Services C
Using Sample Services

Introduction

This appendix presents some basic information about the examples inclu
in theFASTech\Sw\Dev\Samples\replace directory. These samples show how
to develop Level 1, Level2, and Level 3 Services from scratch and you ca
use these files as foundations for your own Services.

Level 1 Services are SECS Services, Level 2 Services are GEM Services
Level 3 Services are VFEI Services.

For more information about SECS, GEM, and VFEI equipment standards
refer to theSTATIONworks Installation Guide.

To test sample Services, you can use the FASTsim equipment simulation
program (FASTsim.exe) provided with STATIONworks under
FASTech\Sw\Dev\Samples\winsecs\FASTsim.You use this program to
simulate equipment talking to a STATIONworks Tool. For further informatio
on FASTsim, refer to the WinSECS Help file or theWinSECS Reference
manual.
C-1
Service Developer’s Guide

Finding Sample Equipment Services/Tools Developing Equipment Services Using Sample Services

ix

ey
les
Finding Sample Equipment Services/Tools

The locations of sample replacement Services documented in this append
and their corresponding Tools are indicated in the table that follows.

Sample Replacement Services Documented in Appendix

Help File for Sample Services

The Help file for these equipment Services is calledReplace.hlp. You can find
the Help file inFASTech\Sw\Dev\Samples\bin.

Building Replacement Services Tool Database

Build the replacment Services database just as you built the sample Tool
database in Chapter 1, only this time, use the .tbf files from under
FASTech\Sw\Dev\Samples\replace\Drivers.

Using Sample (Replacement) Equipment Services

To use the sample equipment Services, you do not need to build them. Th
are already built for you and their DLLs, executables, Help files, and data fi
are included in theFASTech\Sw\Dev\Samples\bin directory. You must,
however, recompile any sample Services that you further modify.

Sample Code, Manual, & Directory
Location Associated Tools & Location

Level 1 Service (SECS)

\FASTech\Sw\Dev\Samples\replace\replss1\
replss1.vbp

smpl1 - new SecsLoopBack

FASTech\Sw\Dev\Samples\replace\Drivers

Level 2 Service (GEM)

\FASTech\Sw\Dev\Samples\replace\replss2\
replss2.vbp

smpl2 - new GemClock
smpl3 - new GemAlarm

FASTech\Sw\Dev\Samples\replace\Drivers

Level 3 Service (VFEI)

\FASTech\Sw\Dev\Samples\replace\replss3\
\replss3.vbp

smpl5 - new VFEIAlarm using Old GClock and
GAlarm
smpl6 - new VFEIAlarm using new GClock & new
GAlarm

FASTech\Sw\Dev\Samples\replace\Drivers
C-2
FASTech Integration

Examining Sample Level 1 ServiceDeveloping Equipment Services Using Sample Services

by

d

en

d

These Services are all referred to asreplacement Services, because they
replace existing Services in a situation where the equipment is not quite
standard.

To use the Services:

1. Register the replacement sample DLL OLE servers on your machine
runningregister.bat (in theFASTech\Sw\Dev\Samples\bin directory).

2. Set the Target in the shortcut to TOM Explorer to
D:\FASTech\Sw\Bin\texplorer.exe /d replace.mdb (where D
is the drive TOM Explorer is installed on) and run TOM Explorer.

OR

Set the Target in the shortcut to the TOM DB Editor to
D:\FASTech\Sw\Bin\tomdb.exe /d replace.mdb (where D is the
drive TOM Explorer is installed on) and run the TOM DB Editor.

You can refer to the Help for the replacement Services by executing the
replace.hlp file in theFASTech\Sw\Dev\Samples\bin directory or by right
clicking on the Service name in TOM Explorer.

Examining Sample Level 1 Service

Open thereplss1.vbpproject. This project produces thereplss1.dll. It contains
only one Service class module named1s2f25.cls, a replacement for the
standard Level 1SecsLoopbackDiagnostic Service. This Service offers the
same features as the Service it is replacing.

If you have not already compiled the Service, compile it in Visual Basic an
then open thesmpl1 - new SecsLoopBack Tool in TOM Explorer.

Examining Sample Level 2 Service

Open thereplss2.vbpproject. This project produces thereplss2.dll. It contains
two Service class modules named2clock.cls, SampleNewGemClock, a
replacement for the standard Level 2GemClock Service. This Service offers
not only the features of the Service it is replacing, but a new Attribute and
Event as well. The code for the new Attribute and Event is highlighted. Wh
you open the project, pay special attention to the sections marked
“- - - new - - -”.

If you have not already compiled the Service, compile it in Visual Basic an
then open thesmpl2 - new GemClock Tool in TOM Explorer. Then try
opening thesmpl3 - new GemAlarm Tool.
C-3
Service Developer’s Guide

Examining Sample Level 3 Service Developing Equipment Services Using Sample Services

3

the

d

y you

files
Examining Sample Level 3 Service

Open thereplss3.vbpproject. This project produces thereplss3.dll. It contains
a Service class module named3vfeialm.cls,
SampleNewVFEIAlarmAManagement, a replacement for the standard Level
VFEIAlarmManagement Service that enhances the original code.
For a detailed description of the enhancements, refer to the comments in
code.

If you have not already compiled the Service, compile it in Visual Basic an
then open thesmpl5 - new VFEIAlarm using old GClock & old
GAlarm in TOM Explorer. Then try opening thesmpl6 - new VFEIAlarm
using new GClock & new GAlarm Tool.

Removing Samples

When you have finished using the replacement sample Services, save an
would like to keep in a new location.

If you registered the DLLs for the replacement Services, you should also
unregister those DLLs by executingUnRegister.bat underFASTech\Sw.

If you compiled the samples, to remove both the source and the compiled
from your machine, execute thecleanup_all.bat script located in
FASTech\Sw\Dev\Samples.
C-4
FASTech Integration

INFO

e

Developing Help Files for Services D
Documentation Kit

Introduction

This appendix presents some basic information about the sample Help fil
included in theFASTech\Sw\Dev\Samples\DocKit directory. This sample
shows how to develop Help files for your own Services using RoboHelp.
D-1
Service Developer’s Guide

Writing Help Files for Your Custom Services Developing Help Files for Services Documentation Kit

ou

:

.

e

Writing Help Files for Your Custom Services

When you develop custom Services you would like Brooks to distribute, y
should develop Help files to accompany them.

To develop Help files that meet Brooks’s documentation standards, you
should work with a Help-authoring product called RoboHelp, available from

Blue Sky Software
7777 Fay Avenue Suite 201
La Jolla, CA 92037
www.blue-sky.com
800/455-5132

For some sample Help files to work with, refer to the HLP file in
FASTech\STATIONworks\Dev\Samples\DocKit.

Theswdockit.hlp file explains how to write a Help file and is itself a sample
The components that went into building it are also included in the DocKit
directory:

■ swdockit.hpj—The Help project file

■ swdockit.cnt—Help contents file

■ swdockit.doc Source file that contain the text of the Help

■ Robohelp.dot—Main Help template file

■ Robortf.dot—Template file to be used by subordinate files in the sampl
Help project that are developed on different machines.

For further information, execute theswdockit.hlp file and read it.
D-2
Brooks Automation

INFO

le

a

ers,
gs
Using Testing Services E

Introduction

Topics in This Chapter

This appendix does not present all testing Service samples availab
with the product. For information on additional Services, refer to the
samples.htm file available in theFASTech\Sw\Dev\Samples directory of
STATIONworks.

The Services in this appendix are to facilitate the following actions in
Service or Tool driver development environment:

■ Setting TOM attributes (FTIAttributeForms)
■ Gathering sizing information (FTISizeInfo)

You use these Services while developing or testing Services or driv
where you may need to alter connections or change attribute settin
frequently.

To make use of the Services you must:

■ Add the related.tbf files under
FASTech\Sw\Dev\Samples\Misc\TBFs to theServices subdirectory
in your database before building the TOM database.

■ Register theFTIdev5.dll andFrmServ.exe files. You register these
files by going to theFASTech\Sw\Dev\Samples\Misc\Servers
directory, finding theregister.bat file, and executing the file.

FTIAttributeForms, p. E-2

FTISizeInfo, p. E-8
E-1
TOM Service Developer’s Guide

FTIAttributeForms Using Testing Services

r

ore

s,
FTIAttributeForms

TheFTIAttributeFormsservice provides three forms for viewing and/o
setting Service Attributes. One forProtocolSECS, another for
ProtocolMBX, and a third generic form for all other Services.

Generic Form An example of the generic form provided for all Services other than
ProtocolSECS andProtocolMBX is shown below.

TheFTIAttributeForms Service dynamically generates this form for
each Service whose attributes you want to set. If the Service has m
Attributes than can be displayed in a single page, aPage 2 tab appears
next to thePage 1 tab. Naturally, each Service has different Attribute
E-2
Brooks Automation

FTIAttributeFormsUsing Testing Services
but the forms all have several common elements presented under
Common Elements of All Three Forms, p. E-4.

ProtocolSECS
Form

For details on the ProtocolSECS form, refer to the samples.htm file
available in the samples directory.

This form has several elements in common with the otherAttributes

forms presented underCommon Elements of All Three Forms, p. E-4.

ProtocolMBX
Form

TheAttributes form forProtocolMBX has two “pages,” each with a
tab you use to display them:

■ Connection

■ Reconnect/Simulate

Connection

Under theConnection tab, you set the Attributes required to connect
STATIONworks to FACTORYworks:

■ MBX name

■ Hostname

■ PCMBX server name

Reconnect/Simulate

Under theReconnect/Simulate tab, you set these Attributes:
E-3
TOM Service Developer’s Guide

FTIAttributeForms Using Testing Services

t

s

e

■ Connect at startup —An automatic connect option. Toggle
betweenTrue andFalse . True whent he check mark displays.

■ Automatic reconnect —An automatic reconnect when the MBX
connection is lost. Toggle betweenTrue andFalse . True whent he
check mark displays.

■ Automatic reconnect interval —Number of milliseconds
between reconnect attempts.

■ Simulate —Simulate mode option. Toggle betweenTrue and
False . True whent he check mark displays.

■ Simulated reply default —The reply to send to the mailbox
when in Simulate mode.

This form has several elements in common with the otherAttributes

forms presented underCommon Elements of All Three Forms, p. E-4.

Common
Elements of All
Three Forms

Attributes, Values, Types

Read-only Attributes display in a grayed text box that you canno
edit.

The Visual BasicVarType of each Attribute appears in parenthese
next to its name. If theVarType is vbString , then by double
clicking on the text box, you expand the box to display multiple
lines that you can edit. In this Multiline Edit/View mode, you can
enter a multiline string with carriage returns and all buttons at th
bottom of the form becomes disabled exceptOK, Cancel , andHelp .
E-4
Brooks Automation

FTIAttributeFormsUsing Testing Services

ds

s):
Clicking OK in this mode sets the new value in the form, but not in
the Service.

Description

A Description block that displays the description of the Attribute
whose value field you have the cursor in. If the description excee
two lines, scrollbars become available.

Buttons

All three forms have the same buttons (corresponding keystroke

◆ Refresh —Retrieves the latest Attribute settings.
◆ OK (or Enter)—Sets the Attributes and closes the form.
◆ Cancel (or ESC)—Cancels settings of Attributes and closes

form.
◆ Apply —Sets the Attributes and leaves the form open.
◆ Help —Launches TOM Help for the Service whose attributes

you are viewing and/or setting.

Attributes

None
E-5
TOM Service Developer’s Guide

FTIAttributeForms Using Testing Services

me
Methods

TheFTIAttributeForms Service dynamically creates Methods whose
names correspond to the Services of the Tool it is assigned to.

To see the Methods, expand theFTIAttributeForms Service’s Methods
under the Tool. Here you ou see a list of Methods, each with the na
of one of the Tool’s Services (see preceding illustration).
E-6
Brooks Automation

FTIAttributeFormsUsing Testing Services

s,

.

To execute the Attributes form for one of the corresponding Service
you right click on the Method and selectExecute .

You then see theAttributes form displaying that Service’s Attributes

Events

None

N OT E Since the Methods are created in theOnInitialize

routine, Methods are not created for cloned Services.
E-7
TOM Service Developer’s Guide

FTISizeInfo Using Testing Services

eing

ated
 a
FTISizeInfo

This Service provides information on the TOM application size
using API calls and indicates the number of messages per second b
transmitted/received.

Other Services
Required

For this Service to load, it requires two other Services be in the
database:

■ ProtocolTimer
■ LOLogging service

Remarks When you loadFTISizeInfo, it clones theLOLogging Service and
names the cloneFTISizeInfo_log then turns off any other logging
options on this clone. TheLog file base path Attribute of this
Service is available to set when theLogging Attribute has been set to
True .

Each Poll interval executes aTrace Method containing these
Attributes:

■ Application Memory Size

■ Tool Message Rate

■ CPU percentage

The Method traces these attributes into a file, where they are separ
by a TAB character, so you can easily import the log file values into
spreadsheet or data analysis program.

Attributes

Application Memory Size

Long. Size of TOM Application in KB

Log file base path

String. Points to theLog file base path of the clone of the
LOLogging Service this Service creates.

Logging

Boolean. Turns logging on/off for the updates

Poll Interval

Long. Interval in seconds (1-360) that theApplication Memory

Size andTool Message Rate should be updated.

Tool Message Rate

Single. messages/sec
E-8
Brooks Automation

FTISizeInfoUsing Testing Services

m

CPU percentage

String. Defined by dividing the application's process time by syste
clock ticks.

Methods

None

Events

None
E-9
TOM Service Developer’s Guide

INFO
Code for Initialize Tool Service F

Introduction

This appendix lists the code for the init (initialize tool) Service’s class, from
thesample2.cls file. This Service is the one that contains theStartTool
Method illustrated in Chapter 8.
F-1
Service Developer’s Guide

Complete Code for the Init.sample2 Service Code for Initialize Tool Service
Complete Code for the Init.sample2 Service

' ---- FASTech Integration. Copyright 1999-2000

' Sample code is provided to customers for unsupported use only.

' Technical Support will accept notification of problems in

' sample services and applications, but FASTech will make

' no guarantee to fix the problems in current or future releases.

Option Explicit

' Object Names

Private SERVICE_NAME As String

Private Const SRV_PROTOCOLSECS = "ProtocolSECS"

Private Const SRV_GEMESTABCOMMS = "GemEstablishCommunications"

Private Const SRV_GEMIDENTIFICATION = "GemIdentification"

Private Const SRV_LOLOGGING = "LOLogging"

Private Const SRV_PROTTIMER = "ProtocolTimer"

'DataDef names

Private Const METH_START = "StartTool"

'Boolean that indicates whether or not Full Verification is on

Private m_oFullVerfication As Boolean

' Constants for sequence of verification

Private Const CaseStep1 = 1

Private Const CaseEnd = 4

' References

Private m_oService As tom.Service 'Service that owns this class

' Global reference to a custom method

Private m_StartTool As tom.Method

Public Sub OnCreate(ByVal Service As tom.Service)

 Dim ServiceSpecificDataDef As tom.DataDef

 Dim StartTool As tom.Method

 ' Save Service reference

 Set m_oService = Service

 Debug.Print "Entering OnCreate"

 ' Here is the StartTool Method Object

 Set StartTool = srvDefineMethod(m_oService, METH_START, "StartTool Method")

 Debug.Print "Leaving OnCreate"

End Sub
F-2
Brooks Automation

Complete Code for the Init.sample2 ServiceCode for Initialize Tool Service
Private Sub Class_Initialize()

 SERVICE_NAME = App.Title + TypeName(Me)

End Sub

Public Sub LetAttribute(ByVal AttributeName As String, NewValue As Variant)

 Debug.Print "Entering LetAttribute"

'no attributes to set

 Debug.Print "Leaving LetAttribute"

End Sub

Public Function GetAttribute(ByVal AttributeName As String) As Variant

 Debug.Print "Entering GetAttribute"

'no attributes to get

 Debug.Print "Attribute is ", AttributeName

 Debug.Print "Leaving GetAttribute"

End Function

Public Sub OnInitialize()

 Dim localAttribute As String

 Debug.Print "Entering OnInitialize"

 ' Perform initialization that must happen after Attributes are

 ' set and/or other services are started.

 ' Here is how to check to be sure a required service is present

 ' If the service is present, it is registered in the NT registry

 srvRequiredService m_oService, SRV_PROTOCOLSECS

 srvRequiredService m_oService, SRV_GEMESTABCOMMS

 srvRequiredService m_oService, SRV_GEMIDENTIFICATION

 srvRequiredService m_oService, SRV_LOLOGGING

 srvRequiredService m_oService, SRV_PROTTIMER

 ' Subscribe to events your service requires

 ' This event occurs when you execute the Open Method of ProtocolSECS

 srvSubscribeEvent m_oService, SRV_PROTOCOLSECS, "Connect"

 ' These events occur when you execute Connect Method of GemEstablishCommunications

 srvSubscribeEvent m_oService, SRV_GEMESTABCOMMS, "Established communications"

 srvSubscribeEvent m_oService, SRV_GEMESTABCOMMS, "Changed"

 ' Set whether or not other services require notification

 ' Pass this handler support routine tomNotifyAlways or tomNotifyNever

 srvSetEventNotification m_oService, SRV_PROTOCOLSECS, "Connect", tomNotifyAlways

 srvSetEventNotification m_oService, SRV_GEMESTABCOMMS,_
"Established communications", tomNotifyAlways

 srvSetEventNotification m_oService, SRV_GEMESTABCOMMS, "Changed", tomNotifyAlways

 'Make use of an attribute in OnInitialize rather than in OnCreate
F-3
Service Developer’s Guide

Complete Code for the Init.sample2 Service Code for Initialize Tool Service
 Debug.Print "Leaving OnInitialize"

End Sub

Public Sub OnExecute(ByVal ExecuteMethod As tom.Method)

 Dim MethodToExec As tom.Method

 Dim InvokingMethod As tom.Method

 Debug.Print "Entering OnExecute"

 On Error GoTo ErrorTrap

 Select Case ExecuteMethod.Name

 Case METH_START

 Debug.Print "StartTool Method Executing"

 'Set MethodToExec = srvCloneMethod(m_oLoLogging, "Stop")

 Set MethodToExec = srvCloneMethod(m_oService, "Stop", SRV_LOLOGGING)

 'Set MethodToExec.Tag = srvCloneMethod(m_oLoLogging, "Start")

 Set MethodToExec.Tag = srvCloneMethod(m_oService, "Start", SRV_LOLOGGING)

 Set InvokingMethod = ExecuteMethod

 'the method executed from the TOM Explorer or the IDE Browser

 'becomes the invoking method

 Set m_StartTool = InvokingMethod 'for use by OnSubscribedEvent

 'Without this Method object, OnSubscribedEvent doesn't know invoking Method

 srvExecute MethodToExec, m_oService, InvokingMethod

 End Select

 Debug.Print "Leaving OnExecute"

 Exit Sub

ErrorTrap:

 Dim ErrorState As t_ErrorState

 srvSaveErrorState ErrorState

 Set ExecuteMethod = Nothing

 srvRestoreErrorState ErrorState

 srvExtendError "OnExecute"

End Sub

Public Sub OnMethodCompleted(ByVal CompletedMethod As tom.Method, ByVal InvokingMethod
As tom.Method)

 Debug.Print "Entering OnMethodCompleted", CompletedMethod.Name

 If InvokingMethod Is Nothing Then

 ' Do Verification

 lVerify CompletedMethod.Tag

 Else

 ' Take actions that should occur after method completes
F-4
Brooks Automation

Complete Code for the Init.sample2 ServiceCode for Initialize Tool Service
 lCompleted CompletedMethod, InvokingMethod

 End If

 Debug.Print "Leaving OnMethodCompleted"

End Sub

Private Sub lVerify(Index As Variant)

 Dim VerifyingMethod As tom.Method

 Dim ExecuteMethod As tom.Method

 On Error GoTo ErrorTrap

 Select Case Index

 Case CaseStep1

 Set VerifyingMethod = srvCloneMethod(m_oService, METH_START)

 VerifyingMethod.Tag = CaseEnd

 Case CaseEnd

 srvVerified m_oService

 Exit Sub

 End Select

 srvExecute VerifyingMethod, m_oService, Nothing

ErrorTrap:

 Dim ErrorState As t_ErrorState

 srvSaveErrorState ErrorState

 Set ExecuteMethod = Nothing

 srvRestoreErrorState ErrorState

 srvExtendError "lVerify"

End Sub

Private Sub lCompleted(ByVal CompletedMethod As tom.Method, ByVal InvokingMethod As
tom.Method)

 Dim FinishedSteps As Boolean

 Dim ExecuteMethod As tom.Method

 Dim MethodToExec As tom.Method

 Dim TheCount As Integer

 TheCount = 0

 If (CompletedMethod.Error.ErrorCode <> 0) Then

 srvCompleted InvokingMethod, FailedMethod:=CompletedMethod

 FinishedSteps = False

 Debug.Print "Method Failed: ", InvokingMethod.Name

 Else

 Select Case CompletedMethod.Name

 Case "Stop"
F-5
Service Developer’s Guide

Complete Code for the Init.sample2 Service Code for Initialize Tool Service
 'This is completion of the LOLogging Stop Method to ensure no error

 'on initiating logging.

 Debug.Print "StartTool Executing Start Method of LOLogging Service"

 Set MethodToExec = CompletedMethod.Tag
'Gets Start method from tag of Stop method

 Set MethodToExec.Tag = srvCloneMethod(m_oService, "Close",_
SRV_PROTOCOLSECS) 'Sets tag to the next method, Close

 srvExecute MethodToExec, m_oService, InvokingMethod

 Case "Start"

 'This is completion of the LOLogging Start Method.

 Debug.Print "StartTool Executing Close Method of ProtocolSECS Service"

 Set MethodToExec = CompletedMethod.Tag 'Gets Close method from tag of
Start method

 Set MethodToExec.Tag = srvCloneMethod(m_oService, "Open",_
SRV_PROTOCOLSECS) 'Sets tag to the next method, Open

 srvExecute MethodToExec, m_oService, InvokingMethod

 Case "Close"

 'This is completion of the ProtocolSECS Close method to ensure no error

 'when executing the Open method.

 Debug.Print "StartTool Executing Open Method of ProtocolSECS Service"

 Set MethodToExec = CompletedMethod.Tag
'Gets Open method from tag of Close method

 srvExecute MethodToExec, m_oService, InvokingMethod

 Case "Open"

 'After the Open Method, Service waits for Connect Event.

 Case "Connect"

 'After the Connect Method, Service waits for the Established
'communication or Changed Event.

 End Select

 End If

End Sub

Public Sub OnVerify(ByVal FullVerification As Boolean)

 Debug.Print "Entering OnVerify"

 m_oFullVerfication = FullVerification

 lVerify CaseStep1

 Debug.Print "Leaving OnVerify"

End Sub

Public Function Version() As String

 Debug.Print "Entering Version"

 Version = srvVersion
F-6
Brooks Automation

Complete Code for the Init.sample2 ServiceCode for Initialize Tool Service
 Debug.Print "Leaving Version"

End Function

Public Sub OnTerminate()

 Debug.Print "Entering OnTerminate"

 Set m_oService = Nothing

 Debug.Print "Leaving OnTerminate"

End Sub

Public Sub OnSubscribedEvent(ByVal tomEvent As tom.Event)

 Debug.Print "Entering OnSubscribedEvent"

 On Error GoTo ErrorTrap

 Dim ReceivedEvent As tom.Event 'Event subscribed to

 Dim ExecuteMethod As tom.Method

 Dim MethodToExec As tom.Method

 Dim TheCount As Integer

 Set ReceivedEvent = tomEvent

 Select Case ReceivedEvent.Name

 Case "Connect"

 Debug.Print "Received notification of Connect Event from ProtocolSECS"

 Debug.Print "Completing StartTool Method's Opening of Port"

 srvGetService(m_oService, SRV_GEMESTABCOMMS).Attributes.Item("Inter-
val").Value = 5

 Set MethodToExec = srvCloneMethod(m_oService, "Connect", SRV_GEMESTABCOMMS)

 srvExecute MethodToExec, m_oService, m_StartTool

 Case "Established communications", "Changed"

 Debug.Print "Received notification that Communication with Tool has_
been established"

 Debug.Print "StartTool Method has communicated with Tool"

 If Not m_StartTool Is Nothing Then

 srvCompleted m_StartTool

 Set m_StartTool = Nothing

 End If

 End Select

 Debug.Print "Leaving OnSubscribedEvent"

 Exit Sub

ErrorTrap:

 Dim ErrorState As t_ErrorState

 srvSaveErrorState ErrorState

 Set ReceivedEvent = Nothing
F-7
Service Developer’s Guide

Complete Code for the Init.sample2 Service Code for Initialize Tool Service
 srvRestoreErrorState ErrorState

 srvExtendError "OnSubscribedEvent"

End Sub

Private Sub Class_Terminate()

 Me.OnTerminate

End Sub
F-8
Brooks Automation

INFO..

Index
A

actions on startup
initiating

handler methods required 3-2
Attributes

creating in database 4-28
handler methods required 3-2
Service requirements 1-2, 6-3
setting 5-3
settings for verification process 3-35
what Service can do with 4-28
when available 3-10, 3-16

Attributes of ProtocolSECS
setting 8-8

Auto Refresh
toggling in TOM Explorer 5-6

C

Class 5-3
class methods

required 3-4
Terminate 3-41

cloning
purpose and advantages of 3-23

communication
establishing with Tool 8-2

container Services
choosing standard Service to contain 6-2
creating handler methods 6-3
creating in database 6-3
dictionaries 6-3
when to use 6-1

D

data values
initialize using Attributes 3-16
where to initialize 3-6

database
Service Developer’s Guide
adding Service 5-2
setting for TOM Explorer 5-4

DataDefs
creating clones of 4-27
creating references to children 3-8
Service requirements 1-2, 6-3, 8-7
Service specific area

creating 3-7
loading 3-7

DataItems
creating for Events 3-11
creating for Methods 3-9
setting for Methods 3-9

debugging Services 5-1
description

parameters for handling errors 7-4
Dictionaries

Service requirements 1-2, 6-3
Dictionary

Service specific area
creating 3-7

E

error notifications
setting up 3-18

error strings
associating error with 7-4

errors
extending 7-3
handling in OnMethodCompleted 3-27
notification to TOM application

sending 3-18
raising 7-6
raising vs. extending vs. triggering 7-2
triggering 7-8

Event notifications
canceling 3-18
setting up 3-18

Events
Index-1

Index

INFO..

e

creating 3-11
DataItems

creating 3-11
debugging 5-10
defining in your Service 3-11
other Service’s

using in your Service 3-31
subscribing to 3-17

handler methods required 3-2
testing 5-10
triggering for higher level Service 3-31
verifying 3-36

F

Full Verification
setting in TOM Explorer 5-11
toggling on in TOM Explorer 3-33

full verification 3-34
FullVerification 3-34
functions

GetAttribute 3-15

G

GetAttribute 3-15
sample code 3-15

H

handler methods
Attributes

handling 3-2
GetAttribute 3-15
LetAttribute 3-14
OnCreate 3-5
OnExecute 3-20
OnInitialize 3-16
OnMethodCompleted 3-4, 3-25
OnSubscribedEvent 3-18, 3-30
OnTerminate 3-41
OnVerify 3-33
order TOM calls 3-3
required 3-2
startup actions

handling 3-2
subscribed Events

handling 3-2
timers
Index-2
handling 3-2
TOM’s use of 3-2

order of callling 3-3
Version 3-40

handler support routines
see Routines

I

incompatible Services
checking for 3-16

invoking Method 3-25
defined 3-22

IPAddressLocal 8-8
IPAddressRemote 8-8
IPPortLocal 8-8
IPPortRemote 8-8

L

lCompleted
sample code 3-29

LetAttribute 3-14
sample code 3-14

logging
starting 8-2

lVerify
sample code 3-39

M

Method notification 5-10
Method objects

using in OnSubscribedEvent 8-6
Methods

chaining 8-4, 8-5
cloning 3-22
creating 3-9
DataItems

creating 3-9
setting 3-9

debugging 5-8
defining in your Service 3-9
determining which to execute in OnExecut

3-20
executing 3-22

steps to 3-22
executing in TOM Explorer 5-8
existing Services
FASTech Integration

Index

INFO..
using 3-23
other Service’s

executing in your Service 3-22
Properties

Notify
settings for 3-18

responding to completion of 8-5
verifying 3-36
where to code action 3-21

N

notification
completion 3-23

notifications
error 3-18

Notify Property of a Method
settings for 3-18

O

objects
cleaning up 3-41

OnCreate 3-5
actions to take in 3-6
restrictions 3-12
sample code 3-12

OnExecute 3-20
determining Method to execute 3-20
handling errors 3-21
sample code 3-24
starting StartTool Method in 8-4
trapping errors in 3-20

OnInitialize 3-16
restrictions 3-19
sample code 3-19

OnMethodCompleted 3-4, 3-25, 8-5
handling errors 3-27
major branches in 3-25, 3-26
sample code 3-29
seeing in action 5-9
verification process 3-26, 3-38

OnSubscribedEvent 3-30
sample code 3-32
when required 3-18

OnsubscribedEvent 8-6
OnTerminate 3-41

debugging 5-14
Service Developer’s Guide
testing 5-14
OnVerify 3-33

P

partial verification 3-34
port

opening 8-2
Properties

Notify
settings for 3-18

Verfication Completed 3-36
Verified 3-36
verify status 3-36

ProtocolSECS Attributes
setting 8-8

Provider 5-3

R

required Services
checking for 3-17

routine
srvServiceDataDef 3-7

routines
srvAddDataItem 3-9, 3-36
srvCloneDataDef 4-27
srvCloneEvent 7-4
srvCloneMethod 3-22, 3-36, 7-4
srvCompleted 3-21, 3-23, 3-25, 3-27
srvDefineEvent 3-11
srvDefineMethod 3-9
srvExecute 3-22, 3-25, 3-36
srvExtendError 3-17, 7-3
srvGetService 3-17
srvIncompatibleService 3-16
srvLoadDataDef 3-8
srvRaiseError 7-6
srvRequiredService 3-17
srvRestoreErrorState 7-5
srvSaveErrorState 7-4
srvServiceDictionaryRoot 4-26
srvSetEventNotification 3-18
srvTriggerError 7-8
srvTriggerEvent 3-31, 3-36
srvVerified 3-35, 3-37
srvVersion 3-40
SubscribeEvent 3-17
Index-3

Index

INFO..

in
S

Service
adding to database 5-2
Events subscribed to

handler methods for 3-2
Service reference

where to save 3-6
Service specific area

creating 3-7
loading DataDefs from 3-7

ServiceProvider 5-3
Services

actions on startup
handler methods for initiating 3-2

Attributes
handler methods for 3-2

compiling 5-15
container

choosing standard service to conta
6-2

purpose of 6-1
debugging 5-1
Events

creating 3-11
display in TOM Explorer 3-12

incompatible
checking for 3-16

levels
order TOM calls 3-3

Methods
creating 3-9
display in TOM Explorer 3-10

other
generating references to 3-17

relationship to Tools 1-2
required

checking for 3-17
setting Class 5-3
setting Provider 5-3
start Tool 8-2
subscribing to events 3-17
testing 5-15
Index-4
timers
handler methods for 3-2

verifying 5-11
srvAddDataItem 3-9, 3-36
srvCloneDataDef 4-27
srvCloneEvent 7-4
srvCloneMethod 3-22, 3-36, 7-4
srvCompleted 3-21, 3-23, 3-25, 3-27
srvDefineEvent 3-11
srvDefineMethod 3-9
srvExecute 3-22, 3-25, 3-36
srvExtendError 3-17, 7-3

parameters for description 7-4
srvGetService 3-17
srvIncompatibleService 3-16
srvLoadDataDef 3-8
srvRaiseError 7-6

parameters for description 7-4
srvRequiredService 3-17
srvRestoreErrorState 7-5
srvSaveErrorState 7-4
srvServiceDataDef 3-7
srvServiceDictionaryRoot 4-26
srvSetEventNotification 3-18
srvSubscribeEvent 3-17
srvTriggerError 7-8

parameters for description 7-4
srvTriggerEvent 3-31, 3-36
srvVerified 3-35, 3-37
srvVersion 3-40
StartTool Method

starting 8-4

T

Terminate class method 3-41
timers

handler methods required 3-2
TOM 5-10
TOM Core 1-10
TOM defined 1-10
TOM Explorer

Auto Refresh
toggling 5-6

debugging with 5-1
FASTech Integration

Index

INFO..
exiting 5-14
Method notification 5-10
setting database 5-4
setting Full Verification 5-11

Tools
conceptual 1-2
establishing communication with 8-2
relationship to Services 1-2
starting with Service 8-2

V

values
initialize using Attributes 3-16
where to initialize 3-6
Service Developer’s Guide
verification
debugging 5-11

verification process 3-33, 3-34, 3-36
Attribute settings 3-35
flow of code 3-38
OnMethodCompleted 3-38
Properties to set 3-36
sample 3-37

Version 3-40
Index-5

	About This Manual
	Purpose of This Manual
	Prerequisites and Related Manuals
	Companion Manuals/Help Files

	Conventions
	Information Included in This Manual

	Getting Started with Samples 1
	Combining Tools and Services
	Establishing Database Components
	Working with Sample Services/Applications
	Building a Database of Sample Tools
	Compiling Sample Services
	Removing Samples
	Sample Services for Testing/Debugging
	Understanding Objects in TOM

	Developing Service Infrastructure 2
	Defining the Service’s Role in the Application
	Writing a Custom Service—Steps to Take
	Set Up the Service Project
	Write the Service Code
	Make the DLL
	Modify the Database

	Creating the Visual Basic Project
	Adding Custom Controls to Your Project
	Adding Required Files to Your Project
	Creating References for Your Project
	Assigning the Project Name and Title
	Creating a Class Module and Declaring Service Name�
	Understanding References, Variables, & Constants Required
	What Kinds of References Are Required?
	What Kinds of Variables Are Required?
	What Kinds of Constants Are Required?

	Creating References, Variables, and Constants
	Fitting ServicesTogether in Visual Basic Project

	Writing Your Handler Methods 3
	Writing Required Handler Methods That TOM Triggers
	When Does TOM Execute Handler Methods?
	Order of TOM Calls to Multiple OnCreates and OnInitializes
	Relationship between OnExecute and OnMethodCompleted
	Terminating Service Action
	Required Class Method

	Understanding the OnCreate Handler Method
	Writing the OnCreate Handler Method
	Pass Reference to Service to OnCreate
	Save a Reference to the Service Object
	Initialize Other Objects
	Create Service Specific Area and DataDefs in Dictionary
	Load DataDefs from Service Specific Area
	Create Child DataDefs in Service Specific Area

	Defining Method Objects for Your Service in OnCreate
	Defining Event Objects for Your Service in OnCreate
	Restrictions in OnCreate
	Code of Sample OnCreate

	Writing the LetAttribute Handler Method
	Raise an Error in LetAttribute

	Writing the GetAttribute Handler Method
	Writing the OnInitialize Handler Method
	Create OnInitialize
	Perform Any Initializations That Require Attributes
	Check That No Incompatible Services Are Running
	Verify That All Required Services Are Present
	Generate References to Other Services That Work with Yours
	Subscribe to Events Your Service Requires
	Set Whether or Not TOM App Receives Notification of Events Your Subscribed To
	Restrictions in OnInitialize
	Code of Sample OnInitialize

	Writing the OnExecute Handler Method
	Accept a TOM Method as an Argument
	Trap Any Errors
	Determine Method to Execute
	Code Method Action
	Handle Any Errors

	Executing Existing Methods in OnExecute
	Clone a Method
	Execute the Cloned Method
	Restrictions in OnExecute
	Code of Sample OnExecute

	Writing the OnMethodCompleted Handler Method
	Accept Completed Method and Invoking Method as Arguments
	Determine the Method Being Completed and Set Up Major Code Branches
	Create Branch to Complete the Method Action
	Accept Completed Method and Invoking Method as Arguments
	Determine Whether or Not Errors Have Occurred
	Use Name Property to Branch
	Determine the Method That Is Completing and Prepare to Proceed
	Code of Sample OnMethodCompleted
	Code of Sample lCompleted

	Writing the OnSubscribedEvent Handler Method
	Accept TOM Event as Argument
	Trap Any Errors That Occur
	Retrieve Any Output DataItems
	Take Other Action
	Handle Any Errors

	Triggering Your Service Event
	Clone Your Service Event
	Set Any Event DataItems
	Trigger the Event for Application
	Code of Sample OnSubscribedEvent

	Writing the OnVerify Handler Method
	Accept a Boolean as an Argument
	Prepare to Handle Any Errors
	Carry Out the Verification Process
	Send Notification to TOM
	Handle Any Errors
	Issues in OnVerify

	Verifying a Service—The Nuts and Bolts
	Execute the Methods
	Trigger the Events
	Send Notification to TOM
	Take a Closer Look at Sample Verification Process
	Code of Sample lVerify

	Writing the Version Handler Method
	Writing the OnTerminate Handler Method
	Writing a Terminate Class Method

	Creating a Tool for Your Service 4
	Working with TOM Builder
	Use TOM Builder Windows

	Creating a New Tool
	Creating a New Resource
	Logical Resources

	Adding Resources to the Tool
	Adding Your Custom Service to Database
	Setting Properties of Your Service
	Assigning Services to Tool Resources
	Creating a New Service Dictionary
	Add Description of Dictionary

	Assigning the Dictionary to a Service
	Creating a New Resource Dictionary
	Assigning the Dictionary to Resources
	Creating DataDefs
	What Can Your Service Do with TOM DataDefs?
	Create DataDefs in Your Service
	Create DataDefs in the Dictionary
	Add Children to the Database
	Loading DataDefs in Your Service
	Load a Top-Level DataDef from Dictionary

	Cloning DataDefs
	Creating Attributes
	What Can Your Service Do with TOM Attributes?
	Create Attributes in Your Service
	Add Attributes to the Database

	Finalizing Tool by Releasing It
	Building TOM Database (Containing New Tool)

	Debugging/Testing Your Service 5
	Preparing to Use Your Service in TOM Explorer
	Make Service Available to TOM Explorer with TOM Builder
	Set Required Attributes in Database

	Running Your Service in Debug Mode
	Executing Methods through TOM Explorer
	Verifying the Service from TOM Explorer
	Exiting TOM Explorer
	Compiling Your Service—Final Compile
	Generate DLL

	Testing Your Service
	Using Your Service in an Application

	Reusing Existing Services in Yours: 6
	Containment
	Choosing a Related Standard Service
	Writing the Container Service
	Create Service in the Database
	Create Required Dictionaries
	Create Handler Methods for Service

	Writing Handler Methods for Low Level Services

	Dealing with Errors 7
	Deciding to Raise, Extend, or Trigger an Error
	Extending an Error
	Call srvExtendError
	Pass Your Handler Method Name as Argument
	Use Description Argument to Identify Error
	Ensure Err Object Contains Correct Information

	Raising an Error
	Triggering an Error
	Receiving an Error from the Outside
	Trigger Error Your Service Encounters, but Resume Method Action

	Creating Service to Initialize Tool 8
	Planning the Approach
	Plan to Chain Methods
	Plan to Respond to Events

	Create Constants and References in Declarations
	Creating Method Object in OnCreate
	Checking Required Services in OnInitialize
	Subscribing to Events in OnInitialize
	Setting Up TOM Notifications
	Starting the StartTool Method in OnExecute
	Continuing to Chain Methods in OnMethodCompleted
	Executing Last Method in OnSubscribedEvent
	Creating the Service DLL
	Creating Service, Tool, Dictionaries in Database
	Running Service in Visual Basic Debugger

	Template/Sample Service Code A
	Complete Code for the Service

	Container Service Code B
	Complete Code for Container Service

	Developing Equipment Services C
	Using Sample Services
	Finding Sample Equipment Services/Tools
	Building Replacement Services Tool Database
	Using Sample (Replacement) Equipment Services
	Examining Sample Level 1 Service
	Examining Sample Level 2 Service
	Examining Sample Level 3 Service
	Removing Samples

	Developing Help Files for Services D
	Documentation Kit
	Writing Help Files for Your Custom Services

	Using Testing Services E
	FTIAttributeForms
	Generic Form
	ProtocolSECS Form
	ProtocolMBX Form
	Common Elements of All Three Forms

	FTISizeInfo

	Code for Initialize Tool Service F
	Complete Code for the Init.sample2 Service

	Index

