Service Developer’s Guide

November 1999

STATIONworks Version 2.1
A FASTech MES Product

= FASTEcH

This document contains information that is the property of Brooks Automation, Inc., Chelmsford, MA 01842, and is furnished for
the sole purpose of the operation and the maintenance of FASTech products of Brooks Automation, Inc. No part of this publication
is to be used for any other purpose, and is not to be reproduced, copied, disclosed, transmitted, stored in a retrieval system, or trans-

lated into any human or computer language, in any form, by any means, in whole or in part, without the prior express written consent
of Brooks Automation, Inc.

Published byBrooks Automation, Inc

15 Elizabeth Drive / Chelmsford, Massachusetts 01248 / USA
(978) 262-2400

FAX (978) 262-2500

http://www.brooks.com OR www.fastech.com

Copyright© 1999 by Brooks Automation, Inc. All rights reserved.

Though at Brooks Automation, Inc., we make every effort to ensure the accuracy of our documentation, Brooks assumes hditgsponsi
for any errors that may appear in this document. The information in this document is subject to change without notice.

Sample code that appears in documentation is included for illustration only and is, therefore, unsupported. This software is provided freeaofdcharge
is not warranted by Brooks in any way. FASTech Products Technical Support will accept notification of problems in samplecasplbut Brooks
will make no guarantee to fix the problem in current or future releases.

FASTech’'s CELLman, CELLtalkCELLguide, Grapheq, WINclient, TOM, STATIONSworks, and FASTspc are trademarks of Brooks Automation, Inc.
FASTech, FASTech’'s CELLworks and FACTORYworks are registered trademarks of Brooks Automation, Inc.

Acrobat Reader is a trademark of Adobe Systems Incorporated.

CodeCenter, ObjectCenter, and TestCenter are trademarks of CenterLine.

DIGITAL UNIX is a trademark of Digital Equipment Corporation.

Glance is a trademark of Hewlett-Packard

HP-UX and Glance are trademarks of Hewlett-Packard Company.

Ingres is a trademark of Ingres Corporation.

ORACLE, ORACLE 7, SQL*Net, and SQL*Plus are registered trademarks of Oracle Corporation.

OSF/Motif is a trademark of Open Software Foundation, Inc.

POLYCENTER is a trademark of Computer Associates International, Inc.

PostScript is a registered trademark of Adobe Systems, Inc.

Purify, Quantify, PureCover are trademarks of Pure Software

Seagate Crystal Reports and Seagate Crystal Info are trademarks or registered trademarks of Seagate Technology, Inc. or one of its subsidiaries
SEMI is a trademark of Semiconductor Equipment and Materials International.

Solaris is a trademark of Sun Microsystems, Inc.

SPARCompiler, UltraSPARC, and all other SPARC trademarks are registered trademarks of SPARC International, Inc.
Sun is a trademark of Sun Microsystems, Inc.

Sybase is a trademark of Sybase, Inc.

System V and SVID (System V Interface Definition) are trademarks of American Telephone and Telegraph Co.
TIB is a trademark of Teknekron Software Systems, Inc.

Tools.h++ and DB.h++ are trademarks of RogueWave Software, Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

SmartShapes and Visio are registered trademarks of Visio Corporation.

Windows NT, Active X, and Visual Basic are trademarks of Microsoft Corporation.

Workstream is a trademark of Consilium, Inc.

X Window system is a trademark of the Massachusetts Institute of Technology.

XRunner is a trademark of Mercury Interactive.

All other product names referenced are believed to be the registered trademarks of their respective companies.

Table of Contents

Chapter 1

Chapter 2

Chapter 3

About This Manual

Getting Started with Samples

Combining TOOIS 8NU SEIVICEScciiiiiiiiiiiiie et 1-2
Establishing Database COMPONENLS..........ccceeeiieiiieiiiinneeneanees 1-3
Working with Sample Services/Applicationscccceeeviiiieriveeccice e, 1-4

Building a Database of SAmple TOOIScoociiiiiiiiieii e 1-5
Compiling SAMPIE SEIVICES.....covviiiiieiieeeeeee e 1-7
RemMOVING SAMPIES ... e 1-8
Sample Services for Testing/Debugging.........cccooriiiiiiieeiiiee e, 1-9
Understanding Objects iNn TOM.........ooooiiiiiiiiii . 1-10

Developing Service Infrastructure

Defining the Service’s Role in the Applicationccccoviiiiiiiiiiie e 2-2
Writing a Custom Service—Steps t0 TaKEooocvvveeieieiiiiiiieieeeee e 2-2
Creating the Visual BasiC PrOJECTuuiuiiiiiiiiiiiiiiiieeeeeeeeeeeeee e e e 2-4
Adding Custom Controls t0 YOUr ProjECTccooiiiiiiiiiieiiiiiieeeeee e 2-4
Adding Required Files t0 YOUr PrOJECT........cccoiiiiiiiiiiiiiee et 2-5
Creating References for Your Projectocooiiiiiiiiiiii e 2-5
Assigning the Project Name and Title ... 2-6
Creating a Class Module and Declaring Service Name............ccccvvvvveeeeinnnnnee. 2-10
Understanding References, Variables, & Constants Required...............ccccvvvee. 2-12
Creating References, Variables, and Constantscccceeeeinniiiiiieeeee e 2-13
Fitting ServicesTogether in Visual BasiC Projectcccccceeeiiiiiiiiiieeeeeennns 2-14

Writing Your Handler Methods

Writing Required Handler Methods That TOM TriggerS.......cccovvvvevvieineeeeeeeeenns 3-2
Understanding the OnCreate Handler Methodceevvvieiiiiiiiiiieee 3-5
Writing the OnCreate Handler Methodccooooiiiiiiiiiccces 3-6
Defining Method Objects for Your Service in OnCreate.............ccevvevvvvvneinnnennn. 3-9
Defining Event Objects for Your Service in OnCreate...........cooeeeveeieieieecceennns 3-11
Writing the LetAttribute Handler Method ..., 3-14
Writing the GetAttribute Handler Methodcccooeiiiiiiiiiii e, 3-15
Writing the Onlnitialize Handler Method.............ooooiiiii e 3-16
Writing the OnExecute Handler Methodooovvviviiviiiiiiiiiicciicceceeceee, 3-20
iii

Service Developer's Guide

Table of Contents

Chapter 4

Chapter 5

Chapter 6

Executing Existing Methods in ONEXECULEcccovviiiiiiiiiiiiii 3-22
Writing the OnMethodCompleted Handler Method............cccoeeveeiiiiiiiiiinnnenn. 3-25
Writing the OnSubscribedEvent Handler Method...........oooviiiiiiiiiciniiiee, 3-30
Triggering YOUr SEIVICE EVENLuviiiiiiiiiiiiieiieeeeeeeeeeeeeeeeee e e e e e eeeeeeeeeeeeeeeees 3-31
Writing the OnVerify Handler Method ... 3-33

Verifying a Service—The Nuts and BOILS............cooiiiiiiiiiiiiiiieieeee e 3-36
Writing the Version Handler Method...................cc . 3-40
Writing the OnTerminate Handler Method............cccviiiiiiiiiiiieec 3-41
Writing a Terminate Class Method ... 3-41

Creating a Tool for Your Service

Working With TOM BUIIAENcovi i e e 4-3
Creating @ NEW TOOuuiiiiiiiiiie it e e e 4-4
Creating a NeW RESOUICEcoooiiiiiiee e e nrennrennees 4-5
Adding Resources to the TOOL.........cooiviiiiiiiicc e 4-6
Adding Your Custom Service to Databasecccoveeiiiiiiiiiiiiic e, 4-8
Setting Properties of YOUr SEIVICE........cooiiiiieiiiciiccce e 4-9
Assigning Services t0 TOOI RESOUICES.........ccuviiiiiiii e e e 4-11
Creating a New ServiCe DICHONAIYccoieiiiiiiiiiiiieeeee i 4-13
Assigning the Dictionary t0 @ SErIVICEcccovvvvviiiiiiiie 4-16
Creating a New Resource DIClIONArYcccceviiiiiriiieiiiiiin e e e e e eeeeens 4-17
Assigning the Dictionary t0 RESOUICES.........ccuuuiiiiiiee e 4-20
Creating DataDeEfS.uuuiiiiiiiiiiiiiiiiiiiiiieeirersreee e rr e e errrerrrreraaraeaeees 4-21
(O [o] o T o T D= 1= 1 =] £ 4-27
Creating AMIDULESoi e 4-28
Finalizing Tool by Releasing It..........cccccovvvvviiii 4-31
Building TOM Database (Containing New TOOI)cccoovviiiiiiiniieeerrceiiinn, 4-32

Debugging/Testing Your Service

Preparing to Use Your Service in TOM EXPIOrer........cccccovviiiiiiieiiiiiiiiiiiieeeen. 5-2
Running Your Service in Debug Mode...........cccc 5-4
Executing Methods through TOM EXPIOrer..........c.oovvvieeiiiiiiiiiiieeeeeeeeeen 5-8
Verifying the Service from TOM EXPIOrer.........cccoovvviiiiiiiiiiiiiiiiieee e 5-11
EXItiNg TOM EXPIOTEIo ennennees 5-14
Compiling Your Service—Final Compile...........cccviiiiiieiiiiiiee e 5-15
TESHING YOUN SEIVICEiiiiiiiiiieie ettt e e et e e e e e st e e e e e e e e aan 5-15
Using Your Service in an Applicationcooooeiiiiiiiiiiciieeccce s 5-15

Reusing Existing Services in Yours: Containment

Choosing a Related Standard SErVICe..........c.oouiiiiiiiiiiiieeeie e 6-2
WIiting the COoNtaiNEr SEIVICE ...t berreessresssesseeesees 6-3
Writing Handler Methods for Low Level Services........coccovvvveeiiiviiiiiiiiiiieeecceeenns 6-6

Service Developer's Guide

Table of Contents

Chapter 7 Dealing with Errors

Deciding to Raise, Extend, or Trigger an Error
Extending an Error
Raising an Error

Chapter 8 Creating Service to Initialize Tool

Planning the Approach
Create Constants and References in Declarations

Checking Required Services in Onlnitialize
Subscribing to Events in Onlnitialize
Setting Up TOM Notifications
Starting the StartTool Method in OnExecute
Continuing to Chain Methods in OnMethodCompleted
Executing Last Method in OnSubscribedEvent
Creating the Service DLL
Creating Service, Tool, Dictionaries in Database
Running Service in Visual Basic Debugger

Appendix A Template/Sample Service Code

Complete Code for the Service

Appendix B Container Service Code

Complete Code for Container SEerviCeuuuvvvvievveeeieeeeeeeieeeieeneen,

Appendix C Developing Equipment Services: Using Sample Services

Finding Sample Equipment Services/Tools

Examining Sample Level 1 Service

Examining Sample Level 3 Service
Removing Samples

Appendix D Developing Help Files for Services: Documentation Kit

Writing Help Files for Your Custom Services

Appendix E Using Testing Services

FTIAttributeForms
FTISizelnfo

TrQQering &N EITONcooiiiiiiiiieie et

Creating Method Object in ONCreateccccccvvvvvvieviieiiieiiieiieeeen,

Building Replacement Services Tool Databaseccccccvvvvvveenen..
Using Sample (Replacement) Equipment Services

Examining Sample Level 2 SErviCeoccccvviveiieiiiiiiiiiiiieeee e

Service Developer's Guide

Table of Contents

Chapter F Code for Initialize Tool Service

Complete Code for the Init.sample2 Service

Index

Service Developer's Guide

"~
About This Manual

Introduction

Topics in This Chapter

Purpose of This Manual, p. viii
Prerequisites and Related Manuals, p. viii
Conventions, p. ix

Information Included in This Manual, p. ix

Service Developer’'s Guidwovides basic information required to start
developing Services for STATIONworks.

The manual takes you step-by-step through the process of developing a
Service using a sample “template” Service provided with the product.

Vii

Service Developer's Guide

‘ About This Manual

Purpose of This Manual

This manual is designed for Service developers with background in:

« Coding in Visual Basic
« Knowledge of SECS and/or GEM messaging standards
« Knowledge of VFEI drivers

To develop a driver, which combines a Tool with one or more Services, you
should have a copy of the equipment manufacturer’'s manual.

Prerequisites and Related Manuals

Before you read this manual, you should be familiar with the following
manuals for TOM:

« STATIONworks Tool Deployment Guide
(or Using TOM Explorein TOM Help file)

« TOM Object Reference
(or Tool Object Model Reference TOM Help file)

Companion If you plan to use Methods from any standard TOM Services in your Service,
Manuals/Help Files you can learn more about those Services in:

« TOM Standard Services Reference
(or Standard Services RefererineTOM Help file)

For details on the handler support routines you use in developing a Service
and a quick reference on the handler methods, refer to:

« Service Developer's Reference
(or Authoring a TOM Service TOM Help file)

When you are ready to create a Tool in the database or add your Service to
the database, you use TOM Builder and refer to:

« TOM Builder User’s Guidea distinct Help file in the STATIONworks
menu.

« Forinformation on working with Services the interact with
FACTORYworks and the MBX, refer to tI®#TATIONworks Host Service
Developer’s Guide.

viii
Service Developer's Guide

About This Manual

Conventions

This manual uses the Visual Basic syntax conventions, inclitdiics for
text that should be replaced, the word Optional before appropriate arguments,
andbold for required literal text.

This manual alters one Visual Basic convention—for convenience it uses the
underscore character to continue lines of sample code even in middle of
strings or paths, breaking lines of code wherever necessary to fit them in the
text column.

Courier font distinguishes names of the following in the text: handler
methods, handler support routines, Methods, Events, Properties, and
Attributes.

Information Included in This Manual

The information in this manual is divided into the chapters described below.

The first five chapters cover developing a Service and Tool from scratch and
take it from the first lines of code through the debugging process. Those
chapters illustrate the process using a template Service provided with the
product. After that, each chapter explores a particular topic, first writing a
container Service, then handling errors in a Service. All sample code is
included in the appendixes.

Chapter

Description

About This Manual

1 Getting Started with Sample Explains where to find the sample Services and applications

2 Developing Service

Explains the purpose of the manual and how it is organized.|Also
presents a list of related manuals.

shipped with STATIONworks and covers how to build a database
of the sample Tools those Services/applications use. You may use
the same techniques described here to create an actual Tool
database.

Takes you step-by-step through the process of laying down the

Infrastructure foundation for your Service, from conceiving the idea to selecting
the controls to coding the general declarations.
3 Writing Your Handler Takes you through the process of writing the handler methods
Methods TOM expects to find in your Service. Covers several commly used

handler support routines.

Service Developer's Guide

About This Manual

Chapter

Description

4

Creating a Tool for Your
Service

Finalizing Your Service

Reusing Existing Services in

Yours: Containment

Dealing with Errors

Template/Sample Service
Code

Container Service Code

Developing Equipment
Services

Developing Help Files for
Services

Using Testing Services

Index

Covers how to create a conceptual Tool for a high level Servic

(like the one in this manual) and add it to the database. For
information on developing drivers, contact Brooks Automation
FASTech Products deployment or LightsOut Software, Inc.

Covers adding your Service to the database, compiling it, and
debugging it. Takes you step-by-step through debugging the
sample Service using TOM Explorer and the Visual Basic
debugger.

Explains how you can reuse an existing Service within your
Service code by containing the Service, so your Service becon
Container ServiceThis technique saves you work when the
Service you plan to write closely resembles an existing stand:
Service.

Covers how to use the handler support routines designed to h
errors in your Service.

e

m\.

nes a

ard

andle

Provides a complete listing of the template sample Service code.

Provides a complete listing of the sample container Service ¢

Presents information about the sample replacement Services
included with STATIONworks. These Services replace the
standard TOM equipment (SECS, GEM, VFEI) Services for
equipment that is not completely standard. You may need to
develop Services like these and can use the samples provide
starting point.

Introduces the documentation kit provided with STATIONwork
which instructs you on how to develop Help files for your cust
Services.

Presents some information on how to use sample testing s¢
included with the product. These samples are intended as
guidelines to developing your own testing Services.

Contains a complete index.

ode.

das a

12

Bryvices

Service Developer's Guide

Getting Started with Samples 1

Introduction

Topics in This Chapter

Combining Tools and Services, p. 1-2
Establishing Database Components, p. 1-3
Working with Sample Services/Applications, p. 1-4
Building a Database of Sample Tools, p. 1-5
Compiling Sample Services, p. 1-7

Removing Samples, p. 1-8

Understanding Objects in TOM, p. 1-10

This chapter presents vital information for using the sample Services and
applications that ship with STATIONworks. It also explores the relationship
between Tools and Services.

1-1

Service Developer's Guide

‘ Combining Tools and Services Getting Started with Samples

Combining Tools and Services

1-2

Usually, you write a Service to control a Tool. If the Tool is SECS/GEM
compliant, you may not even need to write a Service, because you can use
standard Services.

However, you may need to write a new Service for a hon-standard Tool or
write a higher level service, a Service that does not necessarily directly
control a piece of equipment.

Say you want to write a higher level service. So, you don’'t need a Tool for
that Service, right? Wrong. You always need a Tool, even though it may be
only a conceptual Tool.

The combination of a Tool and a Service is called a TOM driver. A higher
level driver (that uses higher level Services) may use a Tool that has
Resources that map to virtual devices. For instance, a Resource called
ProcessControlDeviceight be a virtual device for a series of statistical
process control Services.

You define your Tool using TOM Builder. You must coordinate certain
information that links the Tool to the Service:

« Define a Tool in the database

» Define Resources for the Tool

« Create the Service in the database

» Assign the Service to the Tool in the database

« If your Service requires Attributes, you must add them to the database

Your Service may also require access to existing Dictionaries or a unique
Dictionary of its own. To handle this situation, you need to:

« Create your own Dictionaries if you need them—Service Dictionaries and
Resource Dictionaries

» Add DataDefs to the Dictionaries
« Assign Dictionaries to Services
» Assign Dictionaries to Resources

This manual presents some basics on developing a sample database (next
section) and later ties in how to create DataDefs and Attributes for the Tool;
however, for the complete picture on how to develop a Tool refer {HQve
Builder User’'s GuiddHelp file.

Brooks Automation

‘ Getting Started with Samples Establishing Database Components

Establishing Database Components

Before you develop a new driver, you must establish the driver database
components from the existing database using TOM Builder:

1. When you first load TOM Builder, the database full of existing drivers is
located undeYFASTech\Sw\Drivers and is in the following subdirec-
tories full of several components for each driver:

Dictionaries
Manufacturers
Resources
Services
Tools

O o o o oOgo

2. Under each of these directories, you sb& (TOM builder file) files for
each component. Thtbf files have easy to understand names, like
BTU Thermal Process.tbf or tomss.Verification.tbf
You can check each of these components in to a revision control system to
keep track of versions of that component. To use the original database, you
do not have to build it; it has already been built using these components.
But to alter the database, create a new one, or work with one you already
have, you must do one of the following:

NOTE Before you proceed to edit the database, you should either
check all.tbf files into a revision control system or copy
them to a backup directory.

o Alter the components, then build the database

o Create a new series of components, then build them into a new
database

From here, let's take a look at how to create an entirely new database that you
can have contain the Tools and Resources required for the sample Services in
this manual. You would follow the same steps to create a database for your
custom Services.

1-3

Service Developer's Guide

‘ Working with Sample Services/Applications Getting Started with Samples

Working with Sample Services/Applications

After you install STATIONworks, if you installed the Developer version of
the software, you can find the sample Services and applications for this
manual and th@ OM Application Developer’'s Guida the following
directories:

NOTE Sample code that appears in documentation or is included
with the product is included for illustration only and is,
therefore, unsupported. This software is provided free of
charge and is not warranted by Brooks in any way. Brooks
Technical Support will accept notification of problems in
sample applications, but will make no guarantee to fix the
problem in current or future releases.

Samples Documented in Manual Chapters

Sample Code, Manual, & Directory Location Associated Tool & Location

Template ServiceService Developer’'s Guid€hapters Stepper (not a real tool)

2-5and A dix A
and Appendix A) \FASTech\SWDewSamplesServicetDrivers\

\FASTech\S\bewSamplesServiceddemovbp

Container ServiceService Developer's Guid€hapter6 NV10

and Appendix B
ppendix B) \FASTeckSwDewSamplegContainDrivers\

\FASTech\S\Mpe\SamplesContainnv10\nv10vbp

Init Service with StartTool Methodsgervice Developer's GenTool (not a real Tool, a generic Tool)

Guide Chapter 7 and A dix F
uide Chapter 7.and Appendix F) \Fastech\Sw\Dev\Samples\StartTool\Drive

—

S
\Fastech\Sw\Dev\Samples\StartTool\init.vbp

Sample MyRecipe ApplicatiomOM Application BTU recipe example

Devel 's Gui
eveloper's Guidp \FASTeckSwDewSamplesgppsMyRecip

\FASTecksSw\DewSamplesmppaMyRecipe\myrecipebp Drivers\

Each documented sample comes with a serigbfdfles for its required
custom Tool. They are in the directories und@rivers (see preceding table
for details). You must build a database containing both theSdes and
those from the Standard SECS Dictionary.

The code for each sample has been shipped as a Visual Basic project file that
you must compile. You can compile and run each using the Visual Basic

1-4

Brooks Automation

Getting Started with Samples Working with Sample Services/Applications ‘

compiler. To see the effects of themplate Servicésee table above) you
should:

1. Build the database containing its Tool (location indicated in preceding
table) using TOM Builder.

Compile the Service in the Visual Basic debugger.

3. Then open the stepper Tool in TOM Explorer following the instructions
provided in Chapter 5.

4. You use TOM Explorer and the Visual Basic debugger to step through the
code and see it print in the Debug window indications of what portion of
the code is executing.

Building a Database of Sample Tools

To build the database, you use TOM Builder. Full instructions for how to use
TOM Builder are included in thEOM Builder User’s Guidélelp file,
available from the Start menu by selecting:

Start => Programs => FASTech STATIONworks Beta =>
TOM Builder User’s Guide

To build a database that contains the sample Tools for the sample Services
and/or applications or to build your own database:

1. Start TOM Builder by selectingtart => Programs => FASTech
STATIONworks Beta => TOM Builder

2. Proceed to th&ASTech\Sw\Dev\DriversCore directory. In this
directory, you find th®ictionaries andServices subdirectories.
TheDictionaries subdirectory contains the SECS Standard Dictionary
and theServices directory contains all standard TOM Services. The
Dictionaries and Services are bf files. When you create new Tools or
Services, you should use the Dictionaries and Services in these directories
as a foundation for your database. Later, when you build the database
using thesetbf files (along with the additional ones provided for the
samples), the resultant database contains both standard and custom Tools
and Services.

3. Toinclude the standard Dictionaries and Services in your sample database,
copyDriversCore and theDictionaries andServices
subdirectories from beneath it to the location where you'd like your new
databaseNever work on the original databaseeave the original intact
to be sure you can return to it in the event of a serious error.

You also find thevanufacturers directory undebDriversCore and
may copy that directory to your samples database as well. If you copy the
manufacturers, when you edit the database with TOM Builder, these

1-5

Service Developer's Guide

Working with Sample Services/Applications Getting Started with Samples

1-6

10.

manufacturers later appear in the list you can choose from when you add
a Tool to the database.

Create two additional subdirectories undevers —Resources and
Tools . Make them parallel to the other directories under your copy of
DriversCore

To work with the sample Services, copy the santpidiles from under
their ..\Drivers\Dictionaries , ..\Drivers\Resources , and
.\Drivers\Tools directories to the corresponding directories in your
new database location. You may want to include all sample Tools in a
single database for convenience.

To work with a new database that doescontain the sample Services,
copy any existing Tools or Resources you'd like to use in your new
database fronFASTech\Sw\Drivers\Tools and
\FASTech\Sw\Drivers\Resources to the new directories you have
created. You can usually identify the Tool and Resource by its name, like
Disco Saw 600.tbf , the same name for Tool and Resource. In unusual
cases, the Tool and Resource have different names, suchv&xhe

Tool.tbf and theMessaging Resource.tbf , both required for
ProtocolMBX

Indicate where you would like TOM Builder to find the new database
components {pf files) by selectingrile => Directory Locations

from the menu bar and filling in tli@mponent File Directory

Location field. (You can use Browse to find the correct path to your new
directory.) The path to your new directory should go down to the
DriversCore level, so if you put your copy d@friversCore under
D:\Databasesthe path to the directory should be
D:\Databases\DriversCore

Once you have indicated the location of the directories, the sample Tools
appear with the others under theols tab in the right-hand pane of TOM
Builder (also called th€omponent View).

To build the database, return to the menu bar and sglect> Build
Database...

When the dialog box displays, enter the name of the database to build. The
database name must havenalbextension.

Give the database a few minutes to build. When TOM Builder has finished, it

displays a message on the status bar along the bottom of the window

indicating the database build is complete.

Brooks Automation

‘ Getting Started with Samples

Compiling Sample Services

Compiling Sample Services

NOTE When you build the samples, you do not build the sample

shown in this manual. Instead, you compile and debug the
code from this manual in Chapter 5, where you step through
the debugger to see it perform.

You do not have to compile the samples to use them. However, you can
“build” a large number of the samples provided by executing the following
steps:

1.

Add thevbpathenvironment variable to your system properties. Set this
environment variable to where the build script should find Visual Basic
installed on your machine. For instance, if Visual Basic is installed in
c:\VisualBasic , that is what you should set this variable to.

You set environment variables by selectdgrt => Settings =>

Control Panel , then double clicking on the System icon to open the
System Properties , and selecting thEnvironment tab to find the
system variables.

Edit thedatabaséat file (undeFASTech\SMDe\Samplelto be sure the
following variables point to the correct directories on your hard drive:

set TOM_BUILDER_DIR=..\.\Components\TomBuilderl
set TOM_DRIVER_DIR=..\.\Components\TomBuilder\TmpDriver
set CORE_DRIVER_DIR=..\DriversCore

Run thebuild.batscript (undelFASTech\SMDewSamplek It compiles the
following samples and places the executable, DLL, datalbasé)(.and
Help files in thaFASTech\SMDewSampletin directory:

Sample Application

MyRecipe.exe
MyRecipe.mdb

Sample Container Service

nv10.dll
nv10.mdb

If you compile thedll on your machine, it is automatically registered.
Otherwise, be sure to register tinel0.dllwith regsvr32.ex¢o use this
Tool.

Replacement Equipment Services

replace.mdb replss2.dll
replssl.dll replss3.dll

1-7

Service Developer's Guide

Compiling Sample Services Getting Started with Samples

The replacement equipment Services are examples of Services that would
each replace a particular standard TOM Service for a piece of equipment that
is not quite standard. You may need to write this type of Service. For more
information on these writing such Services and for more information on the
samples provided, refer to Appendix C.

CAUTION

Writing replacement Services is intended for
advanced developers. Brooks Automation
recommends you step through this manual chapter oy
chapter in sequence before attempting to write a
replacement Service.

Help File for Replacement Equipment Services
replace.hlp
replace.cnt

4. Run theegisterbat script (undeFASTech\SWewSamples\bih It
registers the DLLs for the sample Tools.

Removing Samples

When you have finished using these sample Services, save any you would like
to keep in a new location. If you compiled the samples, to remove both the
source and the compiled files from your machine, executdebaup_allbat

script located iFASTech\Sw\Dev\Samples

1-8

Brooks Automation

‘ Getting Started with Samples Sample Services for Testing/Debugging

Sample Services for Testing/Debugging

Another set of sample Services that you may find useful after you have
become a more advanced user of this product are available in the
FASTech\Sw\Dew\Samples\Misc\Lewditgctory. Here, you find the source
code for some level 5 Services designed to be useful during testing and
debugging. You can also open the source code for these Services and
customize them.

CAUTION

Sample code that appears in documentation is
included for illustration only and is, therefore,
unsupported. This software is provided free of charge
and is not warranted by Brooks in any way. Brooks
Technical Support will accept notification of
problems in sample applications, but Brooks will
make no guarantee to fix the problem in current o
future releases.

These Services are contained within a singlg project namedrTldev5.vbp
Inside the project, you find the followingds files:

« SAttrFrm.cls—A Service that displays a form where you can set/alter
Service Attribute settings quickly during testing.

» 5Sizelnf.cls—A Service that indicates the amount of RAM the code you
are runnning is using.

These files contain the source code for the followtinifiles, which you can
find in theFASTech\Sw\Dev\Samples\Misc\TBlitgctory:

« FTIdev5.FTIAttributeForms.tbf
« FTldev5.FTISizelnfo.tbf

To use these Services, you must add these files tdSguicedirectory
underDrivers and rebuilt the samples database. For details on using these
Services, refer to Appendix E.

1-9

Service Developer's Guide

‘ Understanding Obijects in TOM Getting Started with Samples

Understanding Objects in TOM

Before you proceed, you should understand the Tool Object Model (TOM).
Acquaint yourself with it using TOM Explorer and following the Help file or
referring to theSTATIONworks Tool Deployment Guide

| ToolObjecttodel ||

_T_aﬂllmas_‘ Tool Type |
Jyﬂﬂmﬂﬂﬁ_‘ Mamespace '
[Tods gy e

Jllﬁmﬁﬂﬁﬁ‘ Dictionary |

Databef

MMM

Lﬁﬂm-ﬂiﬁ—- Service b

Cofrbutes g Atribute |

Hilethods g wethod |

Ervor Error b

Crataltem
EI’.CLD.&EIZ&'. Object b
\ Dataltem
Colledtion

ji&nts_- Evert .

Crataltem

You may also want to refer to ti®©M Object Reference

1-10

Brooks Automation

.4 4
Developing Service Infrastructure 2

Introduction

Topics in This Chapter

Defining the Service’s Role in the Application, p. 2-2

Writing a Custom Service—Steps to Take, p. 2-2

Creating the Visual Basic Project, p. 2-4

Adding Custom Controls to Your Project, p. 2-4

Adding Required Files to Your Project, p. 2-5

Creating References for Your Project, p. 2-5

Assigning the Project Name and Title, p. 2-6

Creating a Class Module and Declaring Service Name, p. 2-10
Understanding References, Variables, & Constants Required, p. 2-12
Creating References, Variables, and Constants, p. 2-13

Fitting ServicesTogether in Visual Basic Project, p. 2-14

This chapter covers the setup to get you started developing a TOM Service. It
refers to the template Service (a dummy Service) provided under
\FASTech\TOM\Dev\Samples\Services\dambthe Tool that accompanies it
unden\FASTech\TOM\Dev\Samples\Services\Drivers

NOTE You must work with the Professional or Enterprise Edition of
Visual Basic Version 5.00 when developing TOM Services
or applications.

The complete code for the Service’s class is listed in Appendix A.

2-1

Service Developer's Guide

‘ Defining the Service's Role in the Application Developing Service Infrastructure

Defining the Service’s Role in the Application

Before you write your Service, you should decide exactly what you want the
Service to do. Then you are in a position to see whether or not some of the
tasks the Service should perform are available in the standard Services of
TOM.

For instance, if your Service needs to communicate with equipment to carry
out its tasks, it might be able to use methods and events in
SecslLoopBackDiagnostmdProtocolSECSo carry out those tasks.

While you develop the flowchart for your Service, prepare a list of other
Services and their methods/events that you would like your Service to work
with. It's a good idea to have this information handy before you start your
Service.

Writing a Custom Service—Steps to Take

Set Up the Service
Project

Write the Service
Code

2-2

Any Service you write for TOM can be an in-process or out-of-process OLE
server. You embed the OLE server in a TOM application to use it.

NOTE If you are not familiar with how to write an OLE server, you
should look up how to in therogrammer’s Guidand the
Professional Featuresanual forMicrosoft Visual Basic

To write a Service, when you start up Visual Basic, create a Visual Basic
project that is an ActiveX DLL (in-process) or ActiveX EXE (out-of-process).
Then carry out the tasks in each of the sections that follow, outlined below:

« Add any custom controls your Service requires to the Visual Basic
Toolbox in your project.

» Create references to the TOM control and (optionally) the FASTech
WInSECS control.

» Add the required files so that you can use the various handler support
routines (like APIs) in TOM (such dmndletbasg.

« Add theSmainbasfile provided with TOM to your Visual Basic project.
This file defines the required Sub Main routine.

» (recommended) Define constants for other Services yours might use and
the methods, events, and parameters of those Services.

» Create a class module and declare the Service name in it. You need a
separate class module for each Service, but should put all Services you
want to distribute in a single .DLL in the same Visual Basic project.

Brooks Automation

Developing Service Infrastructure Defining the Service's Role in the Application

Make the DLL

Modify the
Database

Define variables required by your Service.
Define references to TOM objects and handlers.

Write handler methods that trigger on actions and write them in the order
presented below (not all of those listed are required; for more information,
refer toWriting Required Handler Methods That TOM Triggeys3-2):

OnCreate
GetAttribute
LetAttribute
Onlnitialize
OnExecute
OnMethodCompleted
OnSubscribedEvent
OnVerify

Version

OnTerminate

Ooo0ooooooog ™

TOM uses these handler methods to run your Service. In addition, you
can write two other handler methods that are not illustrated in this
manual:

O OnStartup
0 OnTimerEvent

Write additional private functions your Service requires—ones the
handler methods call that extend the action that occurs in each handler
method. For instanc@nVerify might call a private function to carry out
some deeper detail of the verification procesdra@reate might call a
private function to create events within the Service.

Make an the DLL or EXE (using the Visual Basic menu selection).

Add your Service to the TOM database.

In the database, associate the Service with Resources of the Tool.

2-3

Service Developer's Guide

‘ Creating the Visual Basic Project Developing Service Infrastructure

Creating the Visual Basic Project

When you first open Visual Basic and the New Project dialog appears, select
ActiveX EXE for the project type and clickpen.

Adding Custom Controls to Your Project

Your Visual Basic project must include some custom controls to work with
the Tool Object Model (TOM). You add these controls:

1. Open theComponents box (by selectingroject => Components).
2. Select théiights Out TOM Control

T |

Cantrals | Designersl Inzertable Dbiect&l

[IFAsTech Treelist Contral
[IFAsTech WinSECS Cantral
[CTFIUp! Conkral Library
[icrfilber 1.0 Type Library
[[]1E Popup Menu

[11E Super Label

[11E Timer
Lights Cuk TOM Cantrol ca e
[1Marquee Conkral Library

CIMCIWndy Conkrol
[Mediaview 1.41 Contral
[IMicroHelp Gauge Conkrol |

[|MicroHelp Key State Contral _ILI Browse, ..
J | B ™ Selected Items Only

—Lights Ouk TOM Conkral

Location: CHFASTechiSwiBin TOMCTRL, oo

k. Cancel Apply

This control is required in all STATIONworks/TOM Services. This action
adds the TOM control to the Visual Basic Toolbox in your project. It also
makes the TOM control available for your Service to use.

3. If you want to use the secs handler support routines, you should also select
the FASTech WIinSECS Control

2-4

Brooks Automation

‘ Developing Service Infrastructure

Adding Required Files to Your Project

Adding Required Files to Your Project

In addition to the custom controls you need to work with TOM, you also need
particular files to ensure you have access to handler support routines. You find
those files in th&FASTech\STATIONworks\Dev\Servidagctory:

1. To be able to work with th&rv handler support routines from TOM, add

theHandlerbasfile provided with TOM to your projeci.

Fraject - demno

£ This file provides
I_ handler support

EI% demo {demo.vbp) routines

-2 Modules

tﬂ‘% Handlerrain {Smain.bas)
tﬂ'ig’é Handlersupport (Handler.bas)
=1-£53 Class Modules

ﬁ@ sample (sample,cls)

2. If you want to use theecshandler support routines from TOM, add the

SecsLIasfile to your Visual Basic project.

In addition, to be sure your project has $ub Main routine:

3. Add theSmainbasfile provided with TOM to your Visual Basic project.

Creating References for Your Project

Your Visual Basic project must include some references to work with TOM.

To create those references:

1. Open theReferences box (by selectingproject => References

).

2. Inall TOM Services, you must create references td._thie¢sOut TOM

Control and theTool Object Model

References - demo_vbp E3 |

&vailable References:

(04

Cancel

YWisual Basic runkime objects and procedures
Yizual Basic objects and procedures

Lights Quk TOM Contral
ool Cbjeck Model
[&ctiveBar Conkral ﬂ
[] ActiveMovie contral bype libeary

[AP Declaration Loader Priority
[1Blue Sky Software SmartHelp 4.0

Yizual Basic For Applications ﬂ

Browse,

Help

Service Developer's Guide

2-5

‘ Assigning the Project Name and Title Developing Service Infrastructure

Assigning the Project Name and Title

When you save the project and assign it a name, sutdgnas/bp you
should also:

1. Open theéProject Properties box (by selectingproject =>
<app> Properties).

2. SettheProject Name (under theGeneral tab) to the same name as the
vbpfile. Later, you use this name as the Servieedsider when you
add the Service to the database.

Provider

demo - Project Properties

General | take I Enmpilel Eampnnentl D'ebugging

Project Twpe: Startuf Objeck:
A ckives B IS Main j
Project Marme:
I demo

Project Help
Help File Mame: Cantext ID:

| T E—

Project Descripkion;

I Sample TOM Service

Threading Model
[| Unattended Execution reading HMode

K
¥ Upgrade ActiveX Controls
= ¢ Thread per Object

I | Require Uicense Key: % Thread Paol I 1 3: threads
™ Betainedlin Memary.

] Cancel | Help

NOTE TOM Tip — Projects

Add your assigned prefix to the name of the project (such as
MY to produceMYdemovbp) to identify the project as yours.
You should select two or three characters to be a unique
prefix for your organization.

3. Note that theStartup Object is Sub Main , which you have access to
because you includésimainbasin the project.

2-6

Brooks Automation

Developing Service Infrastructure Assigning the Project Name and Title

4. Later, you may want to add the name ofHle® File and the
HelpContextID

5. Also, be sure theroject Type IS ActiveX EXE
6. Under theMake tab, be sure to set thi@le to the name of thevhpfile
also.

demo - Project Properties E |

General Make |E|:|m|:uile| I:l:umpl:unentl Debuggingl

Mersion Mumber ————— — Application
Major: Minor: Rewvision:

|1 |20 |13

Title: I dermno

Icon: I j ETL

[Auto Increment

7. Under theCompile tab, you should seleClompile to Native Code
andOptimize for Fast Code

demo - Project Properties |
Generall tdake Compile |E|:um|:u:|nent| Del:uuggingl

¢ Compile to P-Code

% Compile to Native Codsi

¥ Optimize for Fast Code [~ Favar Pentium Pradtm)
" Optimize for Small Code [~ Create Symbalic Debug Infa

" Mo Optimization

advanced Optimizations, .

W Ease Gddress: #&:H11000000

k. Cancel Help

2-7

Service Developer's Guide

Assigning the Project Name and Title Developing Service Infrastructure '

8. Under theComponent tab, selechctiveX Component underStart
Mode.

demo - Project Properties

9. UnderVersion Compatibility , selecBinary Compatibility

CAUTION

If you do not seVersion Compatibility to

Binary Compatibility , when you try to use your
custom Service on another machine, you will not bz
able to successfully register th..

2-8

Brooks Automation

Developing Service Infrastructure Assigning the Project Name and Title '

10. Under theédebugging tab, for purposes of running the demo, selweit
for components to be created

demo - Project Properties

2-9

Service Developer's Guide

‘ Creating a Class Module and Declaring Service Name

Developing Service Infrastructure

Creating a Class Module and Declaring Service Name

2-10

1.

In Visual Basic, create a class module and assign it a name that you can easily
identify it by. For instance, let's name the sample Service sdewsple.cls
This name should be distinct from the project nams

Fraoject - demo

EE|S |

=55 demo (demo.vbp)

=23 Modules

tﬂ'ig’é Handlertain (Smain.bas)
ﬁ‘g’é Handlersuppart (Handler.bas)

EI@ Class Modules /
ﬁ@ sample (sample.cls)

class file for
sample Service

2. Open the class properties by right clicking on the class name and selecting

Properties from the menu.

In theNameproperty for the
Visual Basic class module,

enter the name of the class |sample Classtadule =]
(refer to next illustration). Alphabetic |Categnrized |
The value you assign to the Mame) sample

Nameproperty of the Visual

DataBindingBehaviar 0 - vhiMone

Basic class becomes tName 5-Mukilse =]
property of the Service you Persistable 0 - MaotPersistable

develop.

Instancing

Sets a walue that specifies whether you
can create instances of a public class
outside a project,

CAUTION

When you assign names to new Services that do ot
replace any existing Service, you should add a
unique prefix for your organization to ensure you b
not inadvertently overwrite an existing Service.

Brooks Automation

Developing Service Infrastructure Creating a Class Module and Declaring Serviéeme

4. When assigning the value of tlnetancing property, be sure to select

5 - MultiUse

CAUTION

If you are unable to execute the previous steps,
it is probably because you are not using the
Professional or Enterprise Edition of

Visual Basic 5.0.

5. UnderGeneral Declarations , declare the Service name as a private

constant so that the Service name later appears in the lists of Services the
TOM Explorer and the TOM Builder display:

Private Const SERVICE_NAME =" filenameexampleService"

The constant should be calls8RVICE_NAMBr something similar.

Brooks recommends that tilenamebe the name of the Visual Basic
project that contains your Services as well as the name assigned as the
Service'sProvider in the TOM database. You should be sure to use a
prefix in front of the name of every file you produce to ensure its name is
unique.

NOTE TOM Tip—Constructing SERVICE_NAME in Code

If you want to later be able to change the name of the .DLL
without having to make changes to your code, you can create
a local variable calle8ERVICE_NAMERNd have a class level
function namedhnitialize that sets the local variable as
follows:

Private Sub Class_Initialize()
SERVICE_NAME = App.Title + TypeName(Me)
End Sub

This technique saves you from recoding your Service if you
change the project’s name.

2-11

Service Developer's Guide

‘ Understanding References, Variables, & Constants Required Developing Service Infrastructure

Understanding References, Variables, & Constants Required

In theGeneral Declarationsection of your class module, you create global
constants, global variables, and references to TOM objects.

What Kinds of Your class code should declare references to any TOM objects under General
References Are Declarations. For instance, it should create references to:
Required? « (required) The Service object that “owns” this class

« (as needed) Any other Service this one uses

« (as needed) Other types of TOM objects, such as DataDefs and Attributes

What Kinds of Your Service should have the following global variables:
Variables Are » (recommended) A String for the name of your Service
Required?

« (recommended) A Boolean that indicates whether or not full verification
is on

« (as needed) Variables for Attributes of your Service or Attributes of
another Service that yours uses

What Kinds of In theGeneral Declarationsection of your class module, you should create
Constants Are constants for the following in your Service:
Required? « (recommended) The name of your Service, SERVICE_NAME. (see

Creating a Class Module and Declaring Service Name&-10)

« (recommended) Names for the Methods, Events, and Attributes of your
Service

« (recommended) Names of any other Services yours uses

« (recommended) Names for the Methods, Events, and Attributes of each
Service you want to use within your Service

« DataDefs of this Service or another Service yours uses

NOTE TOM Tip—Defining Constants Multiple Services Can Use

The Visual Basic project for a series of Services that would
belong to a single .DLL should uselefbasfile to define

global constants so that all those Services can access those
constants. Add your unique prefix to the namdedbasto
identify the family of Services in that .DLL, such as
MYdefbas

2-12

Brooks Automation

‘ Developing Service Infrastructure Creating References, Variables, and Constants

Creating References, Variables, and Constants

In your class module'&eneral Declarationsection, you create constants,
variables, and references your Service needs:

1. (recommended) Create a global string to contain the Service’s name:
Private SERVICE_NAME As String

2. Create areference to the Service you are creatingaas. 8ervice type
object:

Private m_oService As tom.Service

3. Create a reference to any other Service this Services uses and make each a
tom.Service type object. For instance, to be able to work with the
SecsLoopbackDiagnos@mdProtocolSECSservices, create references to
them:

Private m_oLoopback As tom.Service
Private m_oProtocolSECS As tom.Service

(Optional) You might also find it convenient to have constants for those
Services:

Private Const SRV_LOOPBACK = "SecsLoopbackDiagnostic"
Private Const SRV_PROTOCOLSECS = "ProtocolSECS"

4. (Optional) You might need a Boolean variable for saving the
FullVerification argument later passed in by TOM indicating
whether or not full verification is on; to use it in more than one handler
method, you can create it as a global:

Private m_oFullVerfication As Boolean

5. (Optional) Create global constants for referring to your Service’s Methods:

Private Const METH_METHOD1 = "Method 1"
Private Const METH_METHOD?2 = "Method 2"
Private Const METH_METHODS = "Method 3"
Private Const EVENT_CONNECT = "Connect Event"

6. (optional) Create global constants for referring to your Service’s
DataDefs:

Private Const DD_DD1 = "DataDef1"
Private Const DD_CHILDA = "ChildDataDefA"
Private Const DD_CHILDB = "ChildDataDefB"
Private Const DD_DD?2 = "DataDef2"

7. Create global variables for your Sevice’s Attributes or Attributes of
another Service that yours uses:

Private Const ATT_EVENT_ENABLED = "ToolEventEnable"

2-13

Service Developer's Guide

Creating References, Variables, and Constants Developing Service Infrastructure

8. (Optional) The sample Service creates constants for use in sequencing
Methods. You might find the need for such constants also:

Private Const CaseStepl =1
Private Const CaseStep2 =2

Private Const CaseStep3 =3
Private Const CaseEnd =4

Fitting ServicesTogether in Visual Basic Project

The illustration below shows how multiple Services and the other pieces of a
Visual Basic project fit together in a .DLL or .EXE. A series of related
Services might be in the same .DLL or .EXE file.

.DLL
or .EXE

Service 1 V Service 2
class class

file sample.cls file
Handler.bas
def.bas

_~ Smain.bas
/ N/

Servic_e 3
class file

The .DLL or .EXE file contains alsfile for each Service you have written. It
also includes all thébasfiles required:

« Any defbasfiles you need.
» Smainbas which is required.

« handletbas which contains the handler support routines.

2-14

Brooks Automation

Developing Service Infrastructure

Creating References, Variables, and Constants

The next illustration shows how the TOM core is involved in running your
Services. You use the Services in a TOM application.

Applica;Ii-(())n'vI [TOM
Instantiate Get Too
calls the b—— 154 Structure Database
TOM Core > 1 TOM Tool
tomCitrl TOM Core Resource
Attribute
\ Attribute
@ Create object Se%{?ﬁ,ﬁte
fraverse hierarchy Attribute
hierarchy
and execute
method
TOM Object Hierarchy
Tool
Resourcel @
ServiceA.dll DLL
g Method1 gug thet of TOM
~ Method?2 ntxecute '
T of Method's | Services
Resource? Service — .
ServiceB.dll - ggmggé
MethodA
MethodB

When the application instantiates a Tool, it accesses the TOM Core

tomCitrl.

The TOM Core determines the structure of the TOM Tool—the Resources
and Services that make up that Tool—based on the information in the

database.

TOM creates a copy of the object hierarchy and puts it in memory.

If your application tries to run a Method of a Service the Tool uses, it
traverses the object hierarchy in memory and runs the Method.

TOM calls thednExecute of that Service, one of the handler methods in

each Service.

From there, the application proceeds. Steps 4 and 5 repeat every time the
application executes a Method in a Service.

2-15

Service Developer's Guide

Creating References, Variables, and Constants Developing Service Infrastructure

2-16

Brooks Automation

Writing Your Handler Methods 3

Introduction

Topics in This Chapter

Writing Required Handler Methods That TOM Triggers, p. 3-2
Understanding the OnCreate Handler Method, p. 3-5

Writing the OnCreate Handler Method, p. 3-6

Defining Method Objects for Your Service in OnCreate, p. 3-9
Defining Event Objects for Your Service in OnCreate, p. 3-11
Writing the LetAttribute Handler Method, p. 3-14

Writing the GetAttribute Handler Method, p. 3-15

Writing the Onlnitialize Handler Method, p. 3-16

Writing the OnExecute Handler Method, p. 3-20

Executing Existing Methods in OnExecute, p. 3-22

Writing the OnMethodCompleted Handler Method, p. 3-25
Writing the OnSubscribedEvent Handler Method, p. 3-30
Triggering Your Service Event, p. 3-31

Writing the OnVerify Handler Method, p. 3-33

Verifying a Service—The Nuts and Bolts, p. 3-36

Writing the Version Handler Method, p. 3-40

Writing the OnTerminate Handler Method, p. 3-41

Writing a Terminate Class Method, p. 3-41

This chapter covers how to develop the actual Service code. It shows
developing the handler methods TOM requires your Service to have. This
chapter refers to the template Service (a dummy Service) provided with TOM
under\FASTech\TOM\Samples\Services\demd the Tool that accompanies

it under\FASTech\TOM\Samples\Services\Drivaiise complete code for the
Service’s class is listed in Appendix A.

3-1

Service Developer's Guide

‘ Writing Required Handler Methods That TOM Triggers Writing Your Handler Methods

Writing Required Handler Methods That TOM Triggers

When Does TOM
Execute Handler
Methods?

3-2

Now you are ready to start generating handler methods. Handler methods are
those Visual Basic methods required in your Service code. They are distinct
from TOM Methods (with a capital M) that your Services defines and/or
executes.

In a TOM Service you are required to include several handler methods:

= OnCreate = OnVerify
= Onlnitialize = OnTerminate
= OnExecute = Version

The TOM control uses these handler methods when it executes your Service.

If your Service executes one or more Methods of another Service, it also
requires the following handler method:

= OnMethodCompleted

If your Service has Attributes, you should also have two other handler
methods:

= GetAttribute
= LetAttribute

If your Service subscribes to Events in other Services, you need another
handler method :

= OnSubscribedEvent

If your Service is among a series of Services for a particular Tool, and you
would like some actions to begin automatically when the Tool starts up, you
should also have a handler method called:

= OnStartup

If your Service needs a timer you can create it witlCreateTimer (a
handler support routine); when you use such a timer, your Service must have
another handler method called:

= OnTimerEvent

How does TOM work with the handler methods? When you create a tool (in
TOM Explorer or another application) that your Service is associated with,
TOM runs yourOnCreate andOninitialize handler methods. TOM
retrieves attributes from the database (or the registry) after rutdnQgeate

and before runnin@ninitialize

When all Services associated with the Tool have been initialized (TOM has
executed theidnCreate andOninitialize handler methods), TOM runs

Brooks Automation

Writing Your Handler Methods Writing Required Handler Methods That TOM Triggers

Order of TOM Calls
to Multiple
OnCreates and
Onlnitializes

this Service'®©nStartup handler method (if one exists). By having

OnStartup , a Service can automatically begin executing Methods of another
Service rather than waiting for direction from a TOM application. However,
OnStartup is not required and Brooks discourages indiscriminate use of it.

NOTE Minimize Actions in OnStartup and
Prominently Document Actions in OnStartup

In general, you should code your Services so that after
initialization, they take action when told to do so, rather than
automatically. Since actions set updnStartup occur
automatically after initialization, you should minimize use of
OnStartup andalways prominently documerdll actions

that occur there.

When you (through, for example, TOM Explorer) try to execute a Method of
your Service, TOM runs younExecute handler method.

Your Service can make a copy of another Service’s Method and use it. In
TOM copying an object is referred to@ening If your Service clones a
Method of another Service (or one of its own Methods) and then executes it,
when the Method completes, TOM calls y@mvethodCompleted .

If your Service has Attributes, when the application (TOM Explorer) reads the
Value property of an Attribute object, it runs yoBetAttribute handler
method. When the application (TOM Explorer) needs to assign a value to the
Value property of an Attribute of your Service, it calls yaetAttribute

handler method.

If another Service’s Event is triggered and you have subscribed to that Event
in your Service, TOM calls yonSubscribedEvent handler method
when the Event triggers.

When you try to verify your Service, as you would in TOM Explorer by right
clicking on the Service and selectivgrify from the pulldown menu that
appears, TOM runs th@nVerify handler method.

When you remove a Tool by going to thbject menu, right clicking on the
tool, and selectin@emove, TOM calls yourOnTerminate method. TOM
also callsOnTerminate when you exit TOM Explorer.

When TOM calls thednCreate handler method for multiple Services, it calls
them by level, starting at level 0. TOM first callsCreate for each Service

at level 0, then level 1, then level2, and so on, through level 5. Within a given
level, TOM does not catdnCreate in any particular order.

The same order applies @minitialize

3-3

Service Developer's Guide

Writing Required Handler Methods That TOM Triggers Writing Your Handler Methods

Relationship
between
OnExecute and
OnMethodCompleted

Applic.

For information on Service levels, refer to the STATIONworks Help file or to
the STATIONworks Tool Deployment Guide

What is the purpose @inMethodCompleted ? In TOM whenever your
Service clones and executes a Method of another Service, it needs to know
when the cloned Method completes (receive a notification).

When the cloned Method completes, TOM runs your Service’s
OnMethodCompleted . This means that every time your Service clones and
executes a Method object, TOM calls yamMethodCompleted afterwards.
So if your Service clones and executes several Methods objectscyicddg
throughOnMethodCompleted for each cloned Method.

This handler method is designed to work with Methods you clone and
execute. You should always clone a Method before executing it, regardless of
where it is defined. The following illustration shows what happens when a
Method ofSrvclclones and executes several MethodSret2

Srvcl DLL Srvc2

Service

clones/executes

Meth1 of SrvcI

MethodCompletion Notification

clones/executes Methl of Srvc2

runs Methl
completed Methl

OnMethodCompleted of Srvcl
clones/executes Meth2 of Srvc2

runs Meth2
completed Meth2

OnMethodCompleted of Srvcl
srvComplete

Terminating
Service Action

Required Class
Method

3-4

i

When you try to exit your Service code, TOM calls youTerminate
handler method.

In addition to the handler methods, your Service should have a
Class_terminate method to terminate the class when the OLE server stops
running.

You see how to write this class method as well as the handler methods in the
sections that follow.

Brooks Automation

‘ Writing Your Handler Methods Understanding the OnCreate Handler Method

Understanding the OnCreate Handler Method

TOM triggers thednCreate handler method when an object of this Service’s
class is created.

Each time your program creates an instance of the object, after it executes
OnCreate , TOM defines Attributes for the object instance. When it defines
those Attributes, it gives them the values from the registry first. If there is no
value for that attribute in the registry, TOM retrieves it from the database.

NOTE Tip—Working with TOM Attributes

Since TOM defines Attributes after it rudaCreate , you
should not attempt to work with Attributes in tienCreate
handler method. Save those actions for @teCreate
completes and take them in telnitialize handler
method.

Every Service must have @mCreate handler method. So, when you load a
Tool, for every Resource of the Tool and every Service the tool uses, TOM
executes a®nCreate handler method. Since each Resource normally has
several Services, TOM usually executes sevendreate handler methods

for a single Resource, in random order. If your Service needs to work with
another Service, that Service’s object may not even have been created when
your OnCreate handler method runs. So, the rule on working with other
Services imOnCreate is:

NOTE Tip—Working with Other Services

Since other Services may not yet exist when your Service
runs, do not take actions involving another Service in
OnCreate . Save those actions for tBalnitialize

handler method.

Do not unnecessarily postpone defining any objects you should generate in
OnCreate . If an initialization doesot require Attribute values from the
database or access to another Service, you should not postpone it.

3-5

Service Developer's Guide

‘ Writing the OnCreate Handler Method Writing Your Handler Methods

Writing the OnCreate Handler Method

In OnCreate , your Service should:

1. Receive areference to your Service as an argument.
2. Save the reference to the Service.

3. Initialize any other data your Service requires.

4

(If required by your Service) Retrieve a reference to the Service Specific
area in the Dictionary.

5. (If required by your Service) Load DataDefs from the Service Specific
area into memory.

6. Create Methods for the Service.
7. Create Events for the Service.

The details on each step follow:

Pass Reference 1. When you write th®©nCreate handler method, you set it up to accept a
to Service to single argument that is the TOM Service passed to it by value:
OnCreate Public Sub OnCreate(ByVal Service As tom.Service)

Save a Reference 2. TheOnCreate handler method should save a reference to the Service
to the Service object passed to it:

Object ' Save Service reference

Set m_oService = Service

Initialize Other 3. If you want to initialize any other data your Service requires (except
Objects Attributes), you should initialize it next.
3-6

Brooks Automation

Writing Your Handler Methods Writing the OnCreate Handler Method

Create Service 4.

Specific Area and

If you would like to retrieve the values of any DataDefs from the database,
you must have created of them into the Dictionary first. For more
information refer tdCreating DataDefsp. 4-10.

DataDefs in

Dictionary You can use TOM DB Editor or TOM Builder to create them. The
structure of the DataDefs used by the sample service appears in TOM
Builder as shown below:

File Object Help

| Loaded StepperDictionary

Load DataDefs You load DataDefs into memory @nCreate using two TOM handler

from Service support routines callestvServiceDataDef andsrvLoadDataDef

Specific Area 1. You use thaervServiceDataDef routine to retrieve a reference to the

Service Specific DataDef for your Service (whose name matches
your Service'ClassName property).

To create the Service Specific area for your Service, pass the routine the
reference to your Service:

ServiceSpecificArea = srvServiceDataDef (m_oService)

Your Service then owns the tom.DataDef object that
ServiceSpecificArea references.

3-7

Service Developer's Guide

Writing the OnCreate Handler Method Writing Your Handler Methods

Create Child 2. After you callsrvServiceDataDef ~ , you can then load child DataDefs
DataDefs in that are in th&ervice Specific area into memory. You do that using

. - srvLoadDataDef , which returns a tom.DataDef object.
Service Specific

Area ThesrvLoadDataDef routine takes three arguments:
0 Service—Reference to the Service being developed.
o Parent—Parent DataDef of the collection of DataDefs being loaded.

o DataDefName-String containing the name of the DataDef to load.

Load DataDefs calleDataDefl andDataDef2 by passing the
ServiceSpecificArea reference as the parent:

Set DataDef1 = srvLoadDataDef(m_oService,_
srvServiceDataDef(m_oService), "DataDefl1")

Set DataDef2 = srvLoadDataDef(m_oService,
srvServiceDataDef(m_oService), "DataDef2")

Then create child DataDefs DataDefl by passindgataDefl as the
parent:

Set ChildDataDefA = srvLoadDataDef(m_oService,_
DataDef1, "ChildDataDefA")

Set ChildDataDefB = srvLoadDataDef(m_oService,_
DataDef1, "ChildDataDefB")

NOTE Tip—References to DataDefs

Do you need references to these DataDefs so that you can
access them elsewhere in the code? Not always. If you later
associate the DataDefs with the Methods that use them (in
TOM Builder or the TOM DB Editor), when you clone the
Method, TOM creates not only a copy of the Method, but a
copy of its DataDefs as well. Under these conditions, you
need only the reference to the clone of the Method.

3-8

Brooks Automation

‘ Writing Your Handler Methods Defining Method Objects for Your Service in OnCreate

Defining Method Objects for Your Service in OnCreate

Another task you carry out ibnCreate is defining methods that you want

for your Service. Methods are commands your Service carries out. You use a
handler support routine called/DefineMethod to create a method. The
routine returns a tom.Method object.

ThesrvDefineMethod routine takes three arguments:

Service—Name of the Service being developed.

MethodName-String containing the name of the Method (this is the
name that appears in TOM Explorer).

Description—String containing a description of the Method.

The routine returns a reference to the new Method object.

1. Create thimethod 1 method and include a description for it:

' Define Methods

Set Method1 = srvDefineMethod(m_oService, METH_METHOD1, "A
Sample Method")

The second argument is the name of the Method as it later appears in
TOM Explorer (contained in the constant here). The third argument, the
description, becomes the Metho@'sscription ~ property setting.

To create a Dataltem for the Method, you usethddDataltem
routine. ThesrvAddDataltem routine, which returns a tom.Dataltem
object, takes four arguments:

0 Service—Name of the Service being developed.

0 Parent—Dataltem that should be the parent of your Dataltem (yours
will be its child).

0 DataDef—A reference to the DataDef that defines the type of
Dataltem you are creating.

0 OptionalChildren—True if you want the new Dataltem to be based
on the definition of a child of the DataD€&glse otherwise.

The routine returns a reference to the new Dataltem object. If you are not
interested in that returned value, you can add the data item without
putting parentheses around the arguments; then, later you can retrieve the
Dataltem using th&lethodNamgnputs.Iltem(numbej technique.

You set the Dataltems using a DataDef you created earlier:

Set DataltemInput = srvAddDataltem(m_oService,_
Methodl.Inputs, ServiceSpecificDataDef.ltem("DataDef1"))

3-9

Service Developer's Guide

Defining Method Objects for Your Service in OnCreate Writing Your Handler Methods

Later, you see these Dataltems undethods for the Service in TOM
Explorer:

E@ Methods

,E} h

b Method 1

......... Y Method 2

......... } Method 2

NOTE TOM Tip—Generating Method Input Items

To define an input item that uses information from Service
Attributes, you must wait until you have Attributes, which
TOM createsfter it runsOnCreate andbeforeit runs
Onlnitialize . Since you can’t work with Attributes until
they exist, you shouldot generate that input item in
OnCreate , but instead iOnlnitialize

Although you can create the “empty shells” (DataDefs) in
OnCreate , you need to delay creating any actual Dataltems
until Onlnitialize , again, because you have no Attributes
until afterOnCreate runs.

Now you are ready to define Events for the Service.

3-10

Brooks Automation

‘ Writing Your Handler Methods Defining Event Objects for Your Service in OnCreate

Defining Event Objects for Your Service in OnCreate

An application that uses your Service might wait until a Service Event occurs
before taking certain actions. How does an Event occur? Your Service fires
the Event in response to an equipment initiated event (calbadlection event

in this manual). For instance, if you were establishing communications with a
piece of equipment, your Service might set up communication parameters
using a Method, but it would have an Event for TOM to execute when the
communication status of the equipment changes. A Service fires the event in
response to the equipment. Only a Service can fire TOM Events.

In the sample Service presented h&velEvent is a Service Event. For your
Service to fire Events, it must first create Event objects.

You define Event objects for your Service similarly to the way you defined
methods, only you usavDefineEvent . ThesrvDefineEvent routine
takes three arguments:

» Service—Name of the Service being developed.

« EventName-String containing the name of the Event (this name appears
in TOM Explorer).

« Description—String containing a description of the Event.

The routine returns a reference to the new Event object.

1. Create th&oolEvent Event and include a description for it:

Set ToolEvent = srvDefineEvent(m_oService, "Tool Event",_
"A sample event")

The second argument is the name of the Event. The third argument, the
description, becomes the Everibisscription ~ property setting.

2. Create a Dataltem for each Output that should result from the Event. You
create the Dataltem using theAddDataltem routine. You pass the
routine the reference to the Service, the parent of the new Output
(Dataltem) you are creating, and the DataDef that defines the new Output
(Dataltem):

Set DataltemOutput = srvAddDataltem(m_oService,_
ToolEvent.Outputs, ServiceSpecificDataDef.ltem("DataDef2"))

Service Developer's Guide

Defining Event Objects for Your Service in OnCreate Writing Your Handler Methods

Later, you see these Dataltems uridants for the Service in TOM
Explorer.

E@' Ewentz
E ----- ﬁ Connect Event
E@' Outputs

o g DataDef2 = 4

Restrictions in There are some actions you should never takm@reate :
OnCreate

NOTE Tip—Actions Not Allowed in OnCreate

« If you raise an error i@nCreate , TOM terminates
your Service object.

« Do not execute methods insi@@Create . You create
them here, but you execute them in another handler
method.

After you have carried out the required tasks in yonCreate handler
method, you are ready to proceed to the next handler method.

Code of Sample The full code ofOnCreate appears below:

OnCreate Public Sub OnCreate(ByVal Service As tom.Service)

Dim ServiceSpecificDataDef As tom.DataDef
Dim ToolEvent As tom.Event

Dim DataltemOutput As tom.Dataltem

Dim Datalteminput As tom.Dataltem

Dim DataDefl As tom.DataDef
Dim DataDef2 As tom.DataDef
Dim ChildDataDefA As tom.DataDef
Dim ChildDataDefB As tom.DataDef

Dim Method1 As tom.Method
Dim Method2 As tom.Method
Dim Method3 As tom.Method

Brooks Automation

Writing Your Handler Methods Defining Event Objects for Your Service in OnCreate

' Save Service reference
Set m_oService = Service
Debug.Print "Entering OnCreate"

' Retrieve your Sevice Specific area in the Dictionary
Set ServiceSpecificDataDef = srvServiceDataDef(m_oService)

" Here is an how to load child DataDefs into your Service Specific area

Set DataDefl = srvLoadDataDef(m_oService, srvServiceDataDef(m_oService),_
"DataDef1")

Set ChildDataDefA = srvLoadDataDef(m_oService, DataDefl1, "ChildDataDefA")

Set ChildDataDefB = srvLoadDataDef(m_oService, DataDef1, "ChildDataDefB")

Set DataDef2 = srvLoadDataDef(m_oService, srvServiceDataDef(m_oService),_
"DataDef2")

' Here is how to define a Method object

' This method is Method1

Set Method1 = srvDefineMethod(m_oService, METH_METHOD1, "A Sample Method")
Set DataltemInput = srvAddDataltem(m_oService, Method1.Inputs,
ServiceSpecificDataDef.ltem("DataDef1"))

" Here is a second Method object

' This method is Method2

Set Method2 = srvDefineMethod(m_oService, METH_METHOD2, "A Second Sample Met

" Here is a third Method object
' This method is Method3
Set Method3 = srvDefineMethod(m_oService, METH_METHOD3, "A Third Sample Meth

' Here is how to define Event objects
Set ToolEvent = srvDefineEvent(m_oService, EVENT_CONNECT, "A sample event")
Set DataltemOutput = srvAddDataltem(m_oService, ToolEvent.Outputs, _
ServiceSpecificDataDef.ltem("DataDef2"))
Debug.Print "Leaving OnCreate"

End Sub

Service Developer's Guide

3-13

‘ Writing the LetAttribute Handler Method Writing Your Handler Methods

Writing the LetAttribute Handler Method

Raise an Error
in LetAttribute

The LetAttribute handler method should set any Attributes inside the
Service. TOM calls this handler method afteiCreate and before

Onlnitialize , but this handler method is required only if your Service has
Attributes.

TOM also calld etAttribute whenever your Service assigns a value to an
Attribute object by setting itgalue property.

This handler method receives an Attribute name (in a string, of course) and an
Attribute value (which could come from a lower level Service in TOM):

Public Sub LetAttribute(ByVal AttributeName As String,_
ByVal NewValue As Variant)

ThenLetAttribute might test to see if the Attribute name passed to it
(AttributeName) matches an expected name. If it finds a match, the handler
method can then set the Service’s corresponding Attribute variable to the
value passed ticetAttribute in NewValue , as shown below:

Select Case AttributeName
Case ATT_EVENT_ENABLED
Att_ToolEventEnable = NewValue
Case Else
Debug.Print “Cannot set ", AttributeName
Debug.Print “Leaving GetAttribute”
End Select

TheNewValue isAs Variant because, since it often comes from the
equipment (via a lower level Service), you can’t be sure whether the value of
the Attribute is a string or a number. If you want to know its type, you should
check the type in your code. If you want to restrictNb@Value to not

simply numeric, but a specific range of numbers, you must check for that level
of compliance in your code.

If the NewValue passed does not fit the requirements for the Attribute value,
you can have the code do one of the following:

« Set the value of the Attribute to a default value
» Leave the value at its previous setting
« Raise an error

Note that you cannot pass tRhewValue by reference!
You can raise an error insidetAttribute . Raising an error does not

change the value of the Attributes that have been set. You find out more about
raising an error ifRaising an Erroy p. 4-6.

Brooks Automation

‘ Writing Your Handler Methods Writing the GetAttribute Handler Method

Writing the GetAttribute Handler Method

GetAttribute retrieves the Attribute setting stored inside the Service. If
Your Service has Attributes, you must hav@egAttribute handler
method. As long as you havésatAttribute handler method, another
Service can also request an Attribute value from your Service.

You should create this handler method as a function that takes a string
argument and returns a variant:

Public Function GetAttribute(ByVal AttName As String) _
As Variant

Then haveGetAttribute use the Attribute name TOM passes it and
compare that name to the various possible Attribute names actually used by
the Service. If the name of the Attribute you pass it matches one of the
Attributes you were expecting, you then have the function return the value of
that Attribute.

For instanceGetAttribute might contain &ase statement like the one
shown below:

Public Function GetAttribute(ByVal AttName As String) _
As Variant

Select Case AttributeName
Case ATT_EVENT_ENABLED
GetAttribute = Att_ToolEventEnable.Value
Case Else
Debug.Print “No such attribute exists ”, AttributeName
End Select

End Function

TOM returns the value th&etAttribute returns to the caller.

3-15

Service Developer's Guide

‘ Writing the Onlnitialize Handler Method Writing Your Handler Methods

Writing the Onlnitialize Handler Method

Create Onlnitialize

Perform Any
Initializations That
Require Attributes

Check That No
Incompatible
Services Are
Running

The Onlnitialize handler method should complete set up of input items
that require Attributes from the database or from other Services. TOM
executes this handler method after it has execOtatreate for each Service
associated with the tool and has generated Attributes.

This handler method should :

1. Perform any initializations that must occur after Attributes have been set
and/or other Services have started.

Check that no incompatible Services are running.
Verify that all required Services are present.

Subscribe to Events of other Services that your Service requires.

a s~ 0N

Set whether or not an application using your Service should receive
notification on Events your Service subscribes to.

o

Generate References to other Services you want to work with.

7. Generate local storage for DataDefs your Service needs.

Start by declarin@ninitialize as public. It has no arguments:

Public Sub Onlnitialize()

Now that TOM has retrieved the Attributes from the registry or database, you
can initialize any values that depend on those Attribute settings.

Since TOM Services can never change values in the database, you set the
Attributes to their initial values using TOM Builder or TOM DB Editor. For
more information refer t@reating Attributesp. 4-17.

In Oninitialize , you should always check to be sure that no Services are
running that are incompatible with yours. For instance, if you are writing a
specialCustomAlarmsService, and it conflicts with the stand&@dmAlarms
Service, you should not have the standard Service running.

To have TOM check for incompatible Services, callsgtvhcompatible-
Service handler support routine. You pass the routine a reference to your
Service, then the name of the Service that is not compatible with it:

srvincompatibleService m_oService, ServiceName

(In the sample service, there are no incompatible Services specified, so this
line of code is there, but commented out.)

You should call the routine once for each incompatible Service. If TOM finds
an incompatible Service is running, it raises an error and TOM handles the

Brooks Automation

Writing Your Handler Methods

Writing the Onlnitialize Handler Method

Verify That All
Required Services
Are Present

Generate
References to
Other Services
That Work with
Yours

Subscribe
to Events Your
Service Requires

error by having the initialization of the tool fail. You wouldn’t want the tool to
be running if an incompatible Service were running!

If your handler method has @m Error Goto statement, the line the code
goes to should use tlsevExtendError routine to extend the error. (See
Deciding to Raise, Extend, or Trigger an Errpr 4-2.)

Your Onlnitialize handler method should always verify that all required
Services are running. You call teeRequiredService handler support
routine to verify required Services. You pass the routine a reference to your
Service, then the name of the other Service that is required.

You should call the routine once for each required Service. For instance, if
ProtocolSEC&ndSecsLoopbackDiagnostire required, you would enter the
routine once for each:

srvRequiredService m_oService, SRV_LOOPBACK
srvRequiredService m_oService, SRV_PROTOCOLSECS

If TOM finds a required Service is missing, it raises an error and TOM
handles the error by having the initialization of the tool fail. You wouldn't
want the tool to be running if any required Service is missing!

If your handler method has @m Error Goto statement, the line the code
goes to should use tlsevExtendError routine to extend the error. (See
Deciding to Raise, Extend, or Trigger an Egrpr 4-2.)

To actually work with the required Services, you generate references to those
Services using thevGetService handler support routine:

Set m_oLoopback = srvGetService(m_oService, SRV_LOOPBACK)

Set m_oProtocolSECS = srvGetService(m_oService,_
SRV_PROTOCOLSECS)

Your Service may need to take action when Events occur that another Service
sets into motion. To ensure that your Service knows about those Events and
can respond when they occur, you start by having your Service subscribe to
those Events. You carry out the subscription in two steps:

1. You can have your Service subscribe to the other Service’s events by call-
ing thesrvSubscribeEvent handler support routine. You pass it a refer-
ence to your Service, the name of the Service owning the Event, and the
Event you want to subscribe to:

srvSubscribeEvent m_oService, SRV_PROTOCOLSECS, "Connect"

Service Developer's Guide

Writing the Onlnitialize Handler Method Writing Your Handler Methods

Set Whether

or Not TOM App
Receives
Notification

of Events Your
Subscribed To

2. Write another handler method for your Service called
OnSubscribedEvent , which you learn more about later in this chapter.

NOTE Tip — Subscribing to Another Service's Events

If you call srvSubscribeEvent in your Service, when the
Event occurs, in addition to sending news of the Event to the
TOM applications (such as TOM Explorer, which receives
notifications in its Event log), TOM triggers the
OnSubscribedEvent handler method in your Service.

Once your Service callgvSubscribeEvent
OnSubscribedEvent becomes a required handler method
for your Service.

Once your Service has subscribed to another Service's Event, when the Event
occurs, if your Service is handling that Event, you may not want the TOM
application to take action. In such a situation, you would not want to notify

the TOM application that is running your Service.

To cancel notification to a TOM application about an event you subscribe to,
you can calbkrvSetEventNotification . You pass this routine several
arguments:

« Areference to your Service

» The name of the Service whose event you've subscribed to
« The name of the event

» The value for thélotify property, eithetomNotifyNever

tomNotifyError (sends notification when an error occurs), or
tomNotifyAlways.

To cancel notifications to a TOM application when@oanect Event of
ProtocolSECS®ccurs, you would pass the routtoenNotifyNever

srvSetEventNotification m_oService, SRV_PROTOCOLSECS, _
"Connect", tomNotifyNever

In this case, you would want to notify the TOM application of the Event. To
ensure that the application using your Service (such as TOM Explorer)
receives notification, pass the routinmNotifyAlways

srvSetEventNotification m_oService, SRV_PROTOCOLSECS, _
"Connect", tomNotifyAlways

NOTE When a Service Event occurs, TOM applications can receive
notifications. For details, refer to theol Object Model
(TOM) Application Developer's Guide

Brooks Automation

Writing Your Handler Methods Writing the Onlnitialize Handler Method

Restrictions in There are some actions you should never takminitialize
OnlInitialize
NOTE Tip — Actions Not Allowed in Onlnitialize
« When you raise an error @ninitialize , TOM
terminates your Service object. Do not raise an error in
Onlnitialize unless you want to terminate the
Service.

« Do not execute methods insiGalnitialize

Code of Sample The full code ofOnInitialize appears below:
Onlnitialize

Public Sub Onlnitialize()
Dim localAttribute As String

Debug.Print "Entering Onlnitialize"

' Perform initialization that must happen after Attributes are
' set and/or other services are started.

" Here is how to check to be sure a required service is present
" If the service is present, it is registered in the NT registry
srvRequiredService m_oService, SRV_LOOPBACK
srvRequiredService m_oService, SRV_PROTOCOLSECS

' Generate References to other services this service works with
Set m_oLoopback = srvGetService(m_oService, SRV_LOOPBACK)
Set m_oProtocolSECS = srvGetService(m_oService, SRV_PROTOCOLSECS)

' Check that no incompatible services are running
' srvincompatibleService m_oService, ANYSERVICECONSTANT

' Subscribe to events your service requires
srvSubscribeEvent m_oService, SRV_PROTOCOLSECS, "Connect"

' Set whether or not other services require notification
' Pass this handler support routine tomNotifyAlways or tomNotifyNever
srvSetEventNotification m_oService, SRV_PROTOCOLSECS, "Connect", tomNotifyAl
'Make use of an attribute in Onlnitialize rather than in OnCreate
Debug.Print "Leaving Onlnitialize"

End Sub

3-19

Service Developer's Guide

‘ Writing the OnExecute Handler Method Writing Your Handler Methods

Writing the OnExecute Handler Method

Accept a TOM
Method as an
Argument

Trap Any Errors

Determine Method
to Execute

TheOnExecute handler method triggers when TOM executes a Method
object of this Service. You must have this handler method if your Service has
any Method objects.

For every Method you defined @nCreate , you need to write the Visual
Basic code that implements the Method actions. You write that code in
OnExecute .

Start by declaringpnExecute as public and setting it up to accept a TOM
Method object passed to it by value:

Public Sub OnExecute(ByVal ExecuteMethod As tom.Method)

Before taking any other action, you should direct the handler method to the
ErrorTrap label when an error occurs:

On Error GoTo ErrorTrap

For further information on how to deal with errors, refeieciding to Raise,
Extend, or Trigger an Errqgmp. 4-2.

Remember that TOM rur@nExecute each time it needs to execute a
Method of your Service. So, each time TOM r@mExecute |, it starts at the
beginning of the handler method again and must, based on the existing
conditions at that time (such as variables you have set in the Service or
Properties of the Method), execute the appropriate Method. In the sample
Service, when TOM run@nExecute , one of the three Methods can be the
Method to execute:

= Method 1
= Method 2
= Method 3

A Case statement can determine the Method that the object model should
execute for the particular run OhExecute by checking thélameproperty

of the Method passed to the routine. Which Method was passed depends on
what the application or higher level Service is trying to do with your Service.

CAUTION

Since Methods can execute concurrently, do not use global variables to main:ain
state information.

Never use th&ag property of the Method passed@mExecute in the code inside
theOnExecute . TheTag property is reserved for the calling application’s use.

Brooks Automation

Writing Your Handler Methods Writing the OnExecute Handler Method

Code Method In the sample Service, the Methods do not take any action other than printing

Action to the Debug window. You need to determine the actions your methods are
going to take and code that action. You would fit the code insidestiee
statement, as in the following example:

Select Case ExecuteMethod.Name

Case METH_METHOD1

Called in OnExecute Debug.Print "Method 1 Executing"
only if all your Debug.Print" ChildDataDefA: " & _
custom method ExecuteMethod.Inputs.ltem("DataDef1").ltem_
action occurs here— ("ChildDataDefA").Value
because the method Debug.Print " ChildDataDefB: " &
does not execute ExecuteMethod.Inputs.ltem("DataDef1").ltem_
another Service’s ("ChildDataDefB").Value
Methods. srvCompleted ExecuteMethod

Case METH_METHOD2
Debug.Print "Method 2 Executing”
srvCompleted ExecuteMethod
Case METH_METHOD3
Debug.Print "Method 3 Executing”
srvCompleted ExecuteMethod

End Select

Handle Any Errors You should always have an error trap set uprixecute to handle any
errors that arise. In th&rorTrap section, in addition to any error handling
required for your Service, if you created a new object in this handler method,
you should always include the exact code that follows, only you should
substitute the appropriate variable ExecuteMethod
ErrorTrap:

Dim ErrorState As t_ErrorState
srvSaveErrorState ErrorState

‘insert custom error handling code here
Set ExecuteMethod = Nothing
srvRestoreErrorState ErrorState

srvExtendError "OnExecute”

For details on how this code handles the error, refextending an Errar
p. 4-3.

3-21

Service Developer's Guide

Executing Existing Methods in OnExecute Writing Your Handler Methods

Executing Existing Methods in OnExecute

Clone a Method

Execute the
Cloned Method

3-22

Let's suppose that insideethod 1 you want to run a Method from another
Service. You would take the following actions:

1. Clone the Method
2. Set any Inputs of the Method
3. Execute the Method witkrvExecute

To run a Method from another Service, you clone the Method and store a
reference to the clone locally in a variable. You clone it using
srvCloneMethod . To use this routine, you pass it a reference to the Service
that owns the Method to clone and the name of the particular Method. For
instance, to execute thest Method from théSecsLoopbackDiagnostic
Service:

Set MethodToExec = srvCloneMethod(m_oLoopback, "Test")

Once you have cloned the Method, you have not only a copy of the Method in
memory, but copies of the associated Inputs and Outputs of the Method—its
DataDefs. So, now you can set the cloned Method’s Inputs using information
from Attributes or other DataDefs:

MethodToExec.Inputs.ltem("ABS").Value =_
ExecuteMethod.Inputs.ltem("DataDef1").ltem_
("ChildDataDefA").Value

After you clone a Method, you execute it usingdivExecute handler

support routine. You pass the routine a reference to the Method to execute, a
reference to your Service, and a reference to the invoking Method, if
applicable. If you hav&lethod 1 execute th&est Method of
SecsLoopbackDiagnostitheTest Method is the one being executed and
Method 1 is the invoking Method.

To keep the code readable, sinceBkecuteMethod (in this casevethod
1) is going to invoke another Method, let’s store invokingMethod:

Set InvokingMethod = ExecuteMethod

Now that theTest Method is inMethodToExecute andMethod 1 is in
InvokingMethod , here is the call tervExecute

srvExecute MethodToExec, m_oService, InvokingMethod

If no other Method is invoking this one, you pass it the Method
to execute as the invoking Method, too.

The invoking method is the one returnedtaviethodCompleted later.

Brooks Automation

Writing Your Handler Methods

Executing Existing Methods in OnExecute

Restrictions in
OnExecute

When the method completes, the Service throws program control into
OnMethodCompleted and you take all subsequent action there. Let's jump to
that handler method (next section) and see how it should complete the

Methods.

NOTE

Tip—Always Clone Method before Executing

Always clone a Method before executing it, even if it is a Method

in your own Service. This action ensures that, since each Service
has its own copy, no other Service can execute the same Method
object while your Service is executing it.

Being able to clone Methods of other Services gives you access
to the Methods of all existing Services associated with the
Resource. Once you have a clone of a Method, you can alter the
clone’s DataDefs.

Once you execute the Method clone, TOM Core keeps a
reference to it as long as it's executing. Once it finishes executing
and TOM passes the clone@aMethodCompleted , it is up to

you to save a reference to the clone or dispose of it.

There are some actions you should never takmifxecute , delineated

below:

NOTE

Tip—Actions Not Allowed in OnExecute

« Although you must call thervCompleted handler support
routine when you have finished processing édethod
object, you do not usually call it dnExecute . You usually
call it in OnMethodCompleted , when the Method you have
called has completed. If you do not caltlCompleted , the
Method hangs and TOM does not send a completion
notification to the invoking Method.

0 For synchronous operations, you usually call
srvCompleted from OnExecute .

0 For asynchronous operations, you usually call
srvCompleted from OnMethodCompleted .

» Since TOM could call youbnExecute again while you are
still processing a previous call OhExecute , do not create
a global reference or global variable (by creating it in
General Declarations), then expect to use that
reference or variable in tl@nMethodCompleted routine.
The reference or variable could be overwritten by the new
call toOnExecute (and thus invalidated) before TOM calls
OnMethodCompleted .

3-23

Service Developer's Guide

Executing Existing Methods in OnExecute Writing Your Handler Methods

Code of Sample The full code ofOnExecute from the sample service showsthod 2
OnExecute cloning and executinylethod 3 :

Public Sub OnExecute(ByVal ExecuteMethod As tom.Method)
Dim MethodToExec As tom.Method
Dim InvokingMethod As tom.Method
Debug.Print "Entering OnExecute"
On Error GoTo ErrorTrap

Select Case ExecuteMethod.Name
Case METH_METHOD1
Debug.Print "Method 1 Executing”

Debug.Print " ChildDataDefA: " & ExecuteMethod.Inputs.ltem("DataDef1").
Item("ChildDataDefA").Value

Debug.Print " ChildDataDefB: " & ExecuteMethod.Inputs.ltem("DataDef1")
Iltem("ChildDataDefB").Value

Set MethodToExec = srvCloneMethod(m_oLoopback, "Test")

MethodToExec.Inputs.ltem("ABS").Value =_
ExecuteMethod.Inputs.ltem("DataDefl1").ltem("ChildDataDefA").Value

Set InvokingMethod = ExecuteMethod
srvExecute MethodToExec, m_oService, InvokingMethod

Case METH_METHOD?2
Debug.Print "Method 2 Executing”
Set MethodToExec = srvCloneMethod(m_oService, METH_METHOD3)
Set InvokingMethod = ExecuteMethod
srvExecute MethodToExec, m_oService, InvokingMethod

srvCompleted ExecuteMethod

Case METH_METHOD3
Debug.Print "Method 3 Executing”
srvCompleted ExecuteMethod
End Select
Debug.Print "Leaving OnExecute"
Exit Sub

ErrorTrap
‘ Standard ErrorTrap code goes here
End Sub

3-24

Brooks Automation

‘ Writing Your Handler Methods Writing the OnMethodCompleted Handler Method

Writing the OnMethodCompleted Handler Method

Accept Completed
Method and
Invoking Method
as Arguments

The OnMethodCompleted handler method triggers when any Service
method executed witkrvExecute finishes executing.

Every TOM method you invoke witkrvExecute (in OnExecute), you
must also have completion instructioninMethodCompleted .

For every time a calling Service or application invokes one of your Service
methods usingrvExecute , your Service must eventually call

srvCompleted . If for some reason, you take an exit path out of a routine,
such as by raising an error, TOM caligCompleted for you.

Steps you should take @®nMethodCompleted are:

1. Determine whether you are completidgVerify or another Method and
branch to separate actions for these two major options.

Inside the branch that responds to an executed Method:

2. Determine whether or not errors have occurred and handle them.
3. Determine Method that is completing.

4. If executing several Methods in sequence, clone and execute the next
Method in the sequence.

5. Fill in values for any Dataltems in the invoking Method’s Outputs
collection.

6. Ifall required Methods have been executed, complete the action by calling
srvCompleted on the invoking method.

Let's start by declarin@nMethodCompleted as public and setting it up to
accept the name of two TOM methods passed to it by value, the first the
method that was executing and the second the method that invoked the first
one:

Public Sub OnMethodCompleted(ByVal CompletedMethod As_
tom.Method, ByVal InvokingMethod As tom.Method)

You are required to have this handler method take these two arguments.

The invoking method is always the same invoking Method you passed to
srvExecute , unless you did not pass it an invoking Method. If you did not
pass an invoking Method tovExecute |, then that argument became
Nothing by default; your Service then pas$étgthing as the argument to
OnMethodCompleted .

3-25

Service Developer's Guide

Writing the OnMethodCompleted Handler Method Writing Your Handler Methods

Determine the
Method Being
Completed and
Set Up Major Code
Branches

3-26

When you enteDnMethodCompleted , the handler method must determine
why you are here.

Which Service method is being completed? It can be any Method you have
cloned/executed either @nExecute or, to verify it, in theDnVerify

handler method. Those two possibilities should form the two major branches
of code in this handler method.

Set Up Major Code Branches

You must always begi@nMethodCompleted by determining which path
lead to it:

= OnVerify
= OnExecute

If OnVerify lead toOnMethodCompleted , then the invoking method is
equal toNothing . So you can check the value of the invoking method to
determine you should take tbaVerify completion path. Otherwise, you
always take the other Method completion path:

If InvokingMethod Is Nothing Then
' Verification path
srvCompleted Method
IVerify (Method.Tag)
Else
' Second layer of Service method tasks
ICompleted CompletedMethod, InvokingMethod
End If
It is best if you set up these major branches and have them each call private
functions to carry out the details of the verification and completion paths. For

instance, in the verification path, you execute §irgCompleted (a handler
support routine), then the private functiverify

NOTE Tip—Calling srvCompleted

For every time another Service or an application invokes one
of your Service methods usisg/Execute , your Service
must eventually calrvCompleted . If for some reason,

you take an exit path out of a routine, such as by raising an
error, TOM carries out th@vCompleted for you.

What doesrvCompleted do? It tells TOM the Method object has finished
executing. If you do not rusrvCompleted , and thereby inform TOM the
method is finished, the Method never completes and TOM does not send a
completion natification to the invoking Method.

Brooks Automation

Writing Your Handler Methods

Writing the OnMethodCompleted Handler Method

Create Branch
to Complete the
Method Action

Accept Completed
Method and
Invoking Method
as Arguments

Determine
Whether or Not
Errors Have
Occurred

In the alternative path, you execute the private function ciledpleted
Eventually this private function caldsvCompleted for all methods that
complete.

Let's focus on the completion of Service methods other dwaferify . (You
see howOnVerify works later undewriting the OnVerify Handler Method
p. 3-33.)

ThelCompleted private function should check to see which Service method
executed last and determine which Service method to execute next.

Using this approach is one technique for cycling thrabigixecute , then
OnMethodCompleted , and always knowing where in its sequence the
process of setting up events is.

Let’s see how this private function should be constructed.

This method should always be private and take the same arguments that
OnMethodCompleted takes, the method being executed and the invoking
method:

Private Sub ICompleted(ByVal CompletedMethod As tom.Method, _
ByVal InvokingMethod As tom.Method)

The Method being executed can be a method you clone from another Service.
Under those conditions, the invoking method would be one in the Service you
are writing.

Before you proceed, you should establish that no errors have occurred up to

this point in the process. So, you can start by checking to see whether or not
theError.ErrorCode Property of the Method is zero. If iti®t zero, an

error has occurred. Under those conditions, the first action you should take is
to callsrvCompleted on the invoking Method:

If (CompletedMethod.Error.ErrorCode <> 0) Then
srvCompleted InvokingMethod, FailedMethod:=CompletedMethod
FinishedSteps = False
Debug.Print "Method Failed: ", InvokingMethod.Name
Else
End If
For more information on how to deal with errors, refebéziding to Raise,
Extend, or Trigger an ErrQip. 4-2.

3-27

Service Developer's Guide

Writing the OnMethodCompleted Handler Method Writing Your Handler Methods

Use Name
Property to Branch

Determine the
Method That Is
Completing and
Prepare to
Proceed

3-28

Based on the setting of tivame property of the method, you can branch to
the various possible actions. For instance, if your Service invoked not only
Test , but its ownMethod 3 Method, then you would have each of them as
possible Methods being completed:

Select Case CompletedMethod.Name

Case "Test"

Case “Method 3”

End Select

Inside each case, you check to see whaCtimepletedMethod.Name is set
to—that should be the name of the Method being completed. Based on which
Method that is, you can prepare to proceed to the next action.

The sequence of execution for the Methods depends on your goal. If you want
to execute the Methods in a particular sequence, as part of the action in
OnMethodCompleted , you might want to clone the Method that should
execute next.

You can then choose to execute another Method gsiigecute . After

your code callsrvExecute , TOM throws program control into
OnMethodCompleted again, so the action starts at the top of this handler
method. The handler method determines that a method has executed and calls
IComplete

After you have taken any such “end actions” for the Method, you should call
srvCompleted on the invoking Method:

Select Case CompletedMethod.Name
Case "Test"
Debug.Print "Completing Test"
srvCompleted InvokingMethod
Case "Method 3"
Debug.Print "Completing Method 3"
srvCompleted InvokingMethod

End Select

Brooks Automation

Writing Your Handler Methods Writing the OnMethodCompleted Handler Method

Code of Sample The full code of the sampl@nMethodCompleted routine follows:

OnMethodCompleted _
Public Sub OnMethodCompleted(ByVal CompletedMethod As tom.Method,
ByVal InvokingMethod As tom.Method)

Debug.Print "Entering OnMethodCompleted”, CompletedMethod.Name
If InvokingMethod Is Nothing Then
' Do Verification
IVerify CompletedMethod.Tag
Else
' Take actions that should occur after method completes
ICompleted CompletedMethod, InvokingMethod
End If
Debug.Print "Leaving OnMethodCompleted"
End Sub

Code of Sample The full code of the sampl€ompleted routine follows:

ICompIeted Private Sub ICompleted(ByVal CompletedMethod As tom.Method,_
ByVal InvokingMethod As tom.Method)
Dim FinishedSteps As Boolean

Dim ExecuteMethod As tom.Method

If (CompletedMethod.Error.ErrorCode <> 0) Then
srvCompleted InvokingMethod, FailedMethod:=CompletedMethod
FinishedSteps = False
Debug.Print "Method Failed: ", InvokingMethod.Name

Else
Select Case CompletedMethod.Name

Case "Test"
Debug.Print "Completing Test"
srvCompleted InvokingMethod

Case "Method 3"
Debug.Print "Completing Method 3"
srvCompleted InvokingMethod

End Select
End If
End Sub

3-29

Service Developer's Guide

‘ Writing the OnSubscribedEvent Handler Method Writing Your Handler Methods

Writing the OnSubscribedEvent Handler Method

Accept TOM Event
as Argument

Trap Any Errors
That Occur

Retrieve Any
Output Dataltems

Take Other Action

3-30

If your Service subscribes to another Service’s Events, you must have a
handler method callednSubscribedEvent . In this handler method, you
take the following steps:

1. Receive the Event TOM passes to the handler method so that you can work
with the Event.

2. Retrieve any Output Dataltems of the Event.

3. Take other action.

Let’s start by declarin@nSubscribedEvent as public and having it receive
a single argument of a TOM Event passed to it by value. This Event is the one
your Service subscribes to:

Public Sub OnSubscribedEvent(ByVal TomEvent As tom.Event)

Before you generate any other code, at the top of the handler method, you can
have arOn Error Goto statement that sends program control to an

ErrorTrap section when it encounters an error while this handler method is
running:

On Error GoTo ErrorTrap

You verify the Event that occurred. If the Event name matches the one you
expected, you can retrieve any of its Output Dataltems. In this situation, let's
store the value of the received Event’s first Dataltem in a local variable:

If TomEvent.Name = "Connect" Then
m_bConnected = True
m_bConnectedData = Event.Outputs.ltem(1).Value

End If

You can take any other action you want to take when notified about the Event.
Usually the Event that is passed to your Service is already a clone, so you can
often treat it as a clone; however, it may not be a clone, so be aware of that
possibility.

The sample code clones its own Event and stores its refereNewivent .
It then setdNewEvent 's DataDef2 to the received EventBescription
Property:

NewEvent.Outputs.ltem("DataDef2").Value = TomEvent.Description

Brooks Automation

Writing Your Handler Methods Triggering Your Service Event

Handle Any Errors

In theErrorTrap section, in addition to any error handling required for your
Service, if you created a new object in this handler method, you should
always include the exact code that follows, only you should substitute the
appropriate variable fotewEvent :

ErrorTrap:
Dim ErrorState As t_ErrorState
srvSaveErrorState ErrorState
‘insert custom error handling code here
Set NewEvent = Nothing
srvRestoreErrorState ErrorState

srvExtendError "OnSubscribedEvent"

For details on how this code handles the error, refExtending an Errqgr
p. 4-3. Next, you see how to trigger your own Service Event.

Triggering Your Service Event

Clone Your
Service Event

Set Any Event
Dataltems

Trigger the Event
for Application

In addition to subscribing to other Service’s Events, your Service can have
Events of its own that it triggers.

To trigger your own Service Event:
1. Clone the Event within your Service that you want to trigger.

2. Set any Output Dataltems of the Event.

3. Trigger the Event for any subscribing higher-level Service or application.

Before you can trigger your Service's Event, you must clone the Event. Let’s
clone the ToolEvent defined earlier@nCreate :

Set NewEvent = srvCloneEvent(m_oService, EVENT_CONNECT)

Once you have the clone, you then setNa@Event 's Output Dataltem
Property:

NewEvent.Outputs.ltem("DataDef2").Value = “First ToolEvent”
Next, you need to trigger the Event for any application or higher level Service
that receives notifications about/subscribes to your Service’s Event. To trigger

the Event, you ussvTriggerEvent . You pass this routine the clone of the
Event stored ilNewEvent :

srvTriggerEvent NewEvent

When you call this routine, it triggers tbaSubscribedEvent of the
subscribing Service or themCtrl_EventNotification routine in the
application.

3-31

Service Developer's Guide

Triggering Your Service Event Writing Your Handler Methods

You may want to trigger your own Event in response to another Service’s
Event occurring.

For more details on how an application receives notifications of Service
Events, refer to thEOM Application Developer's Guide

Code of Sample The full code of the sampl@enSubscribedEvent routine follows. This
OnSubscribedEvent code receives a subscribed Event and triggers its own Event in response, a
relatively common scenario.

In this code, after receiving notification that an Event you subscribed to
occurred, you check to see if tiielue of theToolEnabled attribute of

your Service idrue . If it is, you clone your own EvenHVENT_CONNEQTh
response. Next, you check to see if the Event that occurred w&otieect
Event ofProtocolSECSIf so you then can take tiescription Property

of theConnect Event and use it to sBataDef2 of your Event. Finally, you
trigger the clone of your own Event for the application using your Service.

Public Sub OnSubscribedEvent(ByVal TomEvent As tom.Event)
Debug.Print "Entering OnSubscribedEvent"
On Error GoTo ErrorTrap
Dim NewEvent As tom.Event

If m_oService.Attributes.ltem(ATT_EVENT_ENABLED).Value = "True" Then
Set NewEvent = srvCloneEvent(m_oService, EVENT_CONNECT)
Debug.Print NewEvent.Name
If TomEvent.Name = "Connect" Then

NewEvent.Outputs.ltem("DataDef2").Value = TomEvent.Description
srvTriggerEvent NewEvent
End If

Else
Debug.Print "ToolEventEnable is False"

End If

Debug.Print "Leaving OnSubscribedEvent"

Exit Sub

ErrorTrap:
Dim ErrorState As t_ErrorState
srvSaveErrorState ErrorState
Set NewEvent = Nothing
ErrorState
srvExtendError "OnSubscribedEvent"
End Sub

3-32

Brooks Automation

‘ Writing Your Handler Methods Writing the OnVerify Handler Method

Writing the OnVerify Handler Method

Accept a Boolean
as an Argument

TheOnverify handler method triggers when an object of this Service’s
class is being verified. In this handler method, you must check that all of your
Service’s capabilities work correctly in the current environment. This handler
method is required.

To verify the Service, your Service&nVerify handler method should:

1. Execute each Method object it generates.

2. ldeally, the verification process should test each Event of the Service as
well, or at least those events it can force the equipment to trigger. To
complete testing of other events, you should have an operator or
manufacturing engineer set up the equipment to generate each remaining
event.

3. Send a notification to TOM that the verification is complete.

Let’s start creating this handler method by declaring it as public:
Public Sub OnVerify(ByVal FullVerification As Boolean)

TOM passes the functionrallVerification variable that you should
assign to the corresponding variable you declar&kireral
Declarations for the class. The argument i8aolean variable.

How does your Service determine whether or not Full Verification is on? It
receives this information from an application. If you are using TOM Explorer
to run your Service, you can set an optiondal Verification (select

View => Options and click on th&eneral tab), as shown below:

? TOM Explorer options EE

General |Methn:u:|s| Eventsl Errars I Messagesl

Object iconz — Show Service objectz
" Mone [V LevelD
" Small v Levell
% | age V Level 2
[V Level 3
[Auto refresh g ::Z:Z:g
¥ Eull verification

3-33

Service Developer's Guide

Writing the OnVerify Handler Method Writing Your Handler Methods

Prepare to Handle Before you take any action in tl@nVerify handler method, you first need to
Any Errors send control to an error handler for any error that may have occurred in the
verfication process:

On Error GoTo ErrorVerify

Carry Out the To start verification, store the settingradlVerification (a Boolean) in
Verification the local variable named_fFullVerification that you created earlier:
Process m_fFullVerification = FullVerification

Full Verification

If FullVerification is True , you should carry out an exhaustive
verification process for the Service, which thoroughly tests every Method in
the Service. As long as tirallVerification Boolean variable i$rue ,

your Methods can and should change the state of the physical equipment to
ensure they interact with the tool correctly. Ideally, the full verification
process should also test TOM Events using your equipment, at least those
Events you can force the equipment to trigger. Other Events may not be
testable through the verification process.

Partial Verification

If FullVerification is False , you can still verify the tool, but you should
perform only those tests that do not modify the physical state of the
equipment when they execute. In this case, you must leave the tool in exactly
the state you found it in at the start of the verification process. So, you can
change the state of the physical equipntemporarily, as long as you restore

it to its original setting afterwards.

You can call a local handler method to carry out the full verification. In this
case, let’s calverify and pass it th€ag of the first method to verify for
the index into the verification sequence:

If InvokingMethod Is Nothing Then
' Do Verification
IVerify CompletedMethod.Tag
Else
' Take actions that should occur after method completes
ICompleted CompletedMethod, InvokingMethod

End If

In IVerify , you carry out the actual verification, as outlined in the section on
Verifying a Service—The Nuts and Bpfis3-36. After the verification is
complete, you must send a notification to TOM.

3-34

Brooks Automation

Writing Your Handler Methods Writing the OnVerify Handler Method

Send Notification
to TOM

Handle Any Errors

Issues in OnVerify

Once the verification process is complete, you need to calhiierified
handler support routine to let TOM know that the Service has completed it
verification process:

srvVerified m_oService

You must calkrvVerified to notify TOM. If you do not, the verification
process hangs because it is waiting for notification from your Service.

In this handler method, as @®nExecute , you need to have a section that

Error Goto sends program control to. In tReorTrap section, in

addition to any error handling required for your Service, if you created a new
object in this handler method, you should always include the exact code that
follows, only you should substitute the appropriate variabl®ftethod :

ErrorVerify:
Dim ErrorState As t_ErrorState
srvSaveErrorState ErrorState
‘insert custom error handling code here
Set VMethod = Nothing
srvRestoreErrorState ErrorState

srvExtendError "OnVerify"

See alsdxtending an Errarp. 4-3.

You need not havenverify test all possible settings of Attributes that
establish configuration information:

NOTE TOM Tip—Testing Configuration Attributes in OnVerify

If your Service uses Attributes to establish configuration
information, you are not responsible for testing every
possible setting of such Attributes in theVerify handler
method. Instead, you can test your Service by assuming these
Attributes retain the default values assigned during
initialization.

NOTE Tip—Using the Tag Property of a Method

If you execute multiple Methods within your Service, you
can use th&ag Property to indicate the last one run.

3-35

Service Developer's Guide

‘ Verifying a Service—The Nuts and Bolts Writing Your Handler Methods

Verifying a Service—The Nuts and Bolts

How do you verify the Service? You execute the Methods and Events of the

Service.
Execute the You execute each Method object it generates, by carrying out the following
Methods steps for each:

1. UsesrvCloneMethod to create a clone of the Method.
2. Set up Dataltem objects for the methods usingddDataltem

3. Execute the Method clone usingExecute

NOTE When you rursrvExecute in this handler method, you
must not pass it thiemvokingMethodargument.

For more details on executing a Method, refdExecuting Existing Methods
in OnExecutep. 3-22.

Trigger the Events In addition to testing each Method, ideally, the verification process should test
each Event of the Service as well, or at least those Events that it can force the
equipment to trigger. To complete testing of other Events, you should have an
operator or manufacturing engineer set up the equipment to trigger each
remaining Event.

1. UsesrvCloneEvent to create a clone of the Event.
2. Set up Output Dataltem objects for the methods wsidgidDataltem

3. Trigger the Event for the subscribing higher-level Service or Application
usingsrvTriggerEvent

To test Events, go to the lower level Service (level 0) and execute the Events
to force them to occur. You can subscribe to the protocol level Events. Then
you verify the protocol level Service from TOM Explorer and that tests the
corresponding events in your Service.

For more details on triggering an Event, refefriggering Your Service

Event p. 3-31.
Send Notification You are always required to send a notification to TOM when you have verified
to TOM a Service. You must usevVerified . In TOM Explorer, you can see some

Properties of a Service that indicate the verify status:

« Verified —SettoTrue when all of your Methods and Events have been
run at least once.

« Verfication Completed —True when you have done the
srvVerified on the Service.

3-36

Brooks Automation

Writing Your Handler Methods Verifying a Service—The Nuts and Bolts

Take a Closer The sample Servicelgerify function illustrates how the complete

Look at Sample verification process occurs in any Service.

Verification When theOnVerify handler method executes, it determines whether to run
Process IVerify — orlCompleted and passeverify the name of the first method

to verify. The name is stored @aseStepl , so that the routine proceeds to
execute that case. For each case, it clones the next Method to verify and stores
it in VerifyingMethod , then sets that methodfag property to the name of

the next Method to verify:

Set VerifyingMethod = srvCloneMethod(m_oService, METH_METHOD1)
VerifyingMethod.Tag = CaseStep2

After setting up the action this wdyerify ~ callssrvExecute on the
VerifyingMethod ~ , passing iNothing as the invoking Method, which is a
clue toOnMethodCompleted that the verification process executed the
Method:

srvExecute VerifyingMethod, m_oService, Nothing

As with all other calls ofrvExecute , after it executes the Method, TOM
sends program control innMethodCompleted . OnMethodCompleted
retrieves th@ag from the Method and uses it as the nagéx into

IVerify

IVerify CompletedMethod.Tag

This process continues unierify ~ receivesCaseEnd as the index. At this
point, IVerify callssrvVerified to indicate the Service has been verified:

Case CaseEnd
srvVerified m_oService

Exit Sub

To carry out a partial verify, the sample code also illustrates checking
m_oFullVerfication and, if it is nofTrue , setting therag to CaseEnd at
that point to cut the verification process short.

3-37

Service Developer's Guide

‘ Verifying a Service—The Nuts and Bolts

Writing Your Handler Methods

The following illustrates the flow of the code, which is a typical flow for a
verification process. WhebnVerify executes a Method, TOM goes to

OnExecute to know what action to take. When TOM throws program control

into OnMethodCompleted , the verification process is either finished or not
finished. The circle continues as long as the verification is not complete:

3-38

OnVerify

srvExecute
Method

IVerify

1

If not f/nishi
OnMethodCompleted

|
If finished

|

ICompleted

OnExecute

Brooks Automation

‘ Writing Your Handler Methods Verifying a Service—The Nuts and Bolts

Code of Sample The full code of the samplgerify routine follows:
IVerify

Private Sub IVerify(Index As Variant)
Dim VerifyingMethod As tom.Method
Dim ExecuteMethod As tom.Method
On Error GoTo ErrorTrap

Select Case Index
Case CaseStepl
Set VerifyingMethod = srvCloneMethod(m_oService, METH_METHOD1

VerifyingMethod.Tag = CaseStep2

Case CaseStep2
Set VerifyingMethod = srvCloneMethod(m_oService, METH_METHOD2
If m_oFullVerfication Then
VerifyingMethod.Tag = CaseStep3
Else
VerifyingMethod.Tag = CaseEnd
End If

Case CaseStep3
Set VerifyingMethod = srvCloneMethod(m_oService, METH_METHOD3
VerifyingMethod.Tag = CaseEnd

Case CaseEnd
srvVerified m_oService
Exit Sub
End Select

srvExecute VerifyingMethod, m_oService, Nothing
‘Standard ErrorTrap code goes here

End Sub

3-39

Service Developer's Guide

‘ Writing the Version Handler Method Writing Your Handler Methods

Writing the Version Handler Method

3-40

TheVersion handler method triggers when a TOM application or Service
calls theversion property this Service. For instance, you can access the
Version property of any Service from TOM Explorer.

The handler method must always call $heversion handler support
routine, which takes no argumengsvVersion returns a string that contains
the following properties of thapp object (the Visual Basic project):

= Major
= Minor
= Revision

In the string it returnsrvVersion concatenates the three values and puts
dots between them, so the resulting string filar value of 1 Minor
value of 0, andRevision value of 2 would contain the following:

1.00.0002
The code to th®ersion function should always appear as follows:

Public Function Version() As String
Version = srvVersion

End Function

Brooks Automation

‘ Writing Your Handler Methods Writing the OnTerminate Handler Method

Writing the OnTerminate Handler Method

You are required to have @mTerminate handler method for your Service.

TOM calls theOnTerminate handler method before the Service terminates.

CAUTION

This handler method should clean up memory by
removing any objects your Service has created. You
remove the objects by setting the references to th=m
equal toNothing .

For example, in the sample Service, several objects are cleaned up in this
handler method:

Public Sub OnTerminate()
Set m_oService = Nothing
Set m_oLoopback = Nothing
Set m_oProtocol= Nothing

End Sub

Writing a Terminate Class Method

The finalMethodyou must generate is not a handler method, blass
method. It is &erminate method that terminates the class when the OLE
server stops running. This class method enters the terminate process by
calling OnTerminate :

Private Sub Class_Terminate()

Me.OnTerminate

End Sub

3-41

Service Developer's Guide

.4 4
Creating a Tool for Your Service 4

Introduction

Topics in This Chapter

Every Service requires a Tool, even if it is a higher level Service that does not
work with equipment. This chapter covers how to create a conceptual Tool to
work with a level 4 Service like the one illustrated in this manual. You take
the following steps using TOMBuilder:

Working with TOM Builder, p. 4-3

Creating a New Tool, p. 4-4

Creating a New Resource, p. 4-5

Adding Resources to the Tool, p. 4-6

Adding Your Custom Service to Database, p. 4-8
Assigning Services to Tool Resources, p. 4-11
Creating a New Service Dictionary, p.4-13
Assigning the Dictionary to a Service, p.4-16
Creating a New Resource Dictionary, p.4-17
Assigning the Dictionary to Resources, p.4-20
Creating DataDefs, p.4-21

Cloning DataDefs, p.4-27

Creating Attributes, p.4-28

Finalizing Tool by Releasing It, p.4-31

Building TOM Database (Containing New Tool), p.4-32

4-1

Service Developer's Guide

Creating a Tool for Your Service

4-2

NOTE

Before you create a new Tool, you should have your own
copy of the database to add the Tool to. You can create a new
database as described in Chapter 1 uBd&blishing

Database Components. 1-3 andBuilding a Database of
Sample Toolsp. 1-5, also described in tR®©M Builder

User’s GuideHelp file.

Brooks Automation

‘ Creating a Tool for Your Service Working with TOM Builder

Working with TOM Builder

Use TOM Builder
Windows

TOM Builder is an editor for the Tool Object Model (TOM) database. You use
TOM Builder to create and modify databases for TOM.

When you originally receive TOM, the database includes a series of
component files witltbf extensions and a built database file withradb
extension. Eacttbf file contains the information for a TOM component,
such as a Tool, Resource, Manufacturer, Dictionary, or Service. With the
TOM Builder you can edit the separate files (you make the changes in the
GUI and TOM Builder takes care of the separate component files for you).
After you edit the files, you then use TOM Builder to build a STATIONworks
database from those same files.

When you first see TOM Builder, you see two windows side-by-side. The left
window is called th@bject View , the right theComponent View .

To work with a TOM object, such as a Tool, you must first put that object in
theObject View . You put the object there by taking these steps:

1. Click on the tab for the object type, such as the Tools tab.

2. When a list of the objects appears, double click on the particular object
you want to modify, edit, copy, or take other action on.

3. The object should appear in fbject View

If you are displaying a Tool in th@bject View , you can expand it to see its
Resources, too; however, to modify, edit, copy, or take other action on the
Resources, you must repeat the steps above for the Resources object.

The object you take action on is always tihygmostobject displaying in the
Object View

Now, let’'s take a look at how to form a new Tool.

4-3

Service Developer's Guide

‘ Creating a New Tool

Creating a Tool for Your Service

Creating a New Tool

For the Service in this manual, let's create a Tool with two Resources. First,
you create the Tool:

1.
2.
3.

Click on theTools tab.
From the menu bar, selggle => Create new Tool

When theCreate New Tool dialog appears, enter the name of the new
Tool exactly as you want it to appear in the database.

#, Create New Tool I

I arne: |Stepper

Save Cancel

After you clickSave, theDetermine Tool Manufacturer dialog
appears. You can select a manufacturer from the list or create a new
manufacturer.

After you enter a new manufacturer or select an existing one and click
Save, theDetermine Tool Manufacturer dialog appears. You can
select a manufacturer from the list or, to enter a new manufacturer, click
the Create New Manfuacturer check box and enter the name next to
New NameLater, the manufacturer and developer display as properties of
the Tool in TOM Explorer.

Now, when you clicksave, the Tool appears in the list under the Tools tab.
To display an icon for the Tool in ti@bject View , list the Tools in the
Component View and double click on the Tool's name in the list.

A= TOM Builder

File Object Help

........... ﬁ Stepper

Now you are ready to create some Resources for the Tool. Resources are
devices that make up the Tool, such as tubes that make up a furnace. If you
are creating a new Tool that does not use existing Resources, you need to add

Brooks Automation

Creating a Tool for Your Service Creating a New Tool

Resources to the database. For the sample Tool, you can also have conceptual
Resources.

Creating a New Resource

Resources are the physical or conceptual components of a Tool that are each
separately programmed to generate a model of the Tool.

For instance, a stepper is a Tool; its input POD and output POD are each
distinct Resources, since they behave differently.

Rule of thumb—if the equipment has a SECS Resource ID, then itis a
Resource rather than a Tool (although it can be both).

For the sample Tool, let's create SMIF1 and SMIF2 as Resources:

1. IntheComponent View , click the tab for the type of component you want
to create (Resources). Select Hile => Create new...

2. A dialog pops up where you enter the name of the new Resource.

#, Create Mew Rezource

Name: |5 IF|

Save Cancel

3. Once you have created a new component file you can edit it by double-
clicking it in theComponent View .

Creating a new component makes a new file in the corresponding component
directory. The file has abf extension. You can see a list of the existing
components of a particular type by clicking on the tab for that component in
the Component View .

Logical Resources You can also have logical Resources. How do you know a Resource as
logical? For instance, if you have a stepper with two SMIF arms, each a
Resource, you could make a single logical Resource that represents the three
as a unit. This logical Resource is not associated with any physical equipment.
You could then attach Services to this “super stepper” logical Resource. Why
not make the “super stepper” a Tool? Because if it were a Tool, you could not
have Services for it. You must associate Services with a Resource.

Now, you are ready to add Resources to the Tool (what actually happens is
that the Tool references the Resources).

4-5

Service Developer's Guide

‘ Adding Resources to the Tool Creating a Tool for Your Service

Adding Resources to the Tool

Once you have created a new Tool and created Resources for it, you can
assign the Resources to the Tool. You can also follow this procedure to assign
more Resources to an established Tool. Take this action for each Resource:

1. To display an icon for your Tool in ti@bject View , first click on the
Tools tab in th&Component View , then double click on the Tool's name
in the Tools list.

):' TOM Builder

File DObject Help

........... ﬁ Stepper

2. Now, to add Resources to the Tool, click on the Resources tab in the
Component View.

3. When you see a list of Resources, click on the one you want added to this
Tool and hold down the mouse button.

4. Drag and drop the Resource icon onto the Tool icon iDbfet View

File DObject Help

P TOM Builder =]

Tools Resources | Dictiunariesl Servicesl F'n:upertiesl Heferencesl Edit I

4-6

Agymtek Fluid-Move
Aokl

DEFE. Printer

Disco zaw

Digco Saw GO0

E atonM208 Resource
Lam Rainbow
Meszzaging Resource
Mitto ‘W afer Maounter
Prametris Besounce
PST Lot Sorter Resource
ShIF

- | SMIF2

I -10580

W HCOM

WHCOM TRS14

Brooks Automation

Creating a Tool for Your Service Adding Resources to the Tool

You should see the Resources appear under the Tool @b View

A= TOM Builder

File Object Help

Next, you can select existing Services that match the messages of your Tool.

If you have a custom Service you want to add to the Tool, proceed to the next
section.

4-7

Service Developer's Guide

‘ Adding Your Custom Setrvice to Database Creating a Tool for Your Service

Adding Your Custom Service to Database

You can add your own Service to the database before it is successfully
compiled; however, you cannot use the Service until you have compiled it
(Chapter 5 takes you through compiling and debugging the Service):

1. Click on the Services tab in the Component View.
2. ForProvider enter the root name of the Visual Basic project file.

3. ForClass enter the root name of thels file in the Visual Basic
project.

% Create Mew Service

Frovider Idemn

Clazz Isample

Save Cancel

(TogetherProvider andClass make up the name of the component
file.) The illustration shows entering the name of the sample Service just
to illustrate how the provider and class fit together to form the name
demo.sample .

4. Click Save. The name of the Service then appears in the list of Services.

Next, you must set Properties of the Service.

4-8

Brooks Automation

‘ Creating a Tool for Your Service Setting Properties of Your Service

Setting Properties of Your Service
To set the Properties of a Service, first be sure the list of Services is displaying
by clicking the Services tab. Then:

1. Double click on the Service name. The Service appears Objbet
View.

2. Click theEdit tab to edit the Properties of the Service.

Toals I Hesnurcesl Din::tin:nnariesl Sewicesl F'rn:-pertiesl Fieferepces Edit

CanClane |True

Comments |

Dezcrption I

DictionamM ame |

HelpContext ||:|
HelpFile |

Lewel |4
Name |sam|:ule

IInda |

3. TheNameproperty (at the bottom) is required. SetNtagneto the root
name of thecls file in the Service’s Visual Basic project. For the
demo.sample Servicesample alone is the name. The name of a
standard Service should not change.

4. CanClone is optional, but defaults tealse . SetCanClone to True if
you want other Services or Applications to be able to clone this Service.
Otherwise, leave Kalse .

5. Comments are optional. Enter any comments you want to make in the
Comments field. To enter a long comment, double click in the field and an
Cell Editor dialog appears, where you can see more characters.

6. TheDescription is optional. This description later appears in TOM
Explorer. To see a larger area, double click in the field arkhn
Editor dialog appears, where you can see more characters.

7. TheHelpContext is the Help context ID to index into the Help file for
the Service.

8. HelpFile is the name of the Help file, including its .HLP extension.

4-9

Service Developer's Guide

Setting Properties of Your Service Creating a Tool for Your Service

9. Level isthe level of the Service. The default is 0, but your Service is
unlikely to be talking directly to the equipment, as a Level 0 Service does.
For details on the meanings of the Service levels, refeetace Levels

10. Right click on the Service icon in thiject View and selectave.

The Service is not ready to use until you assign it to a Resource.

4-10

Brooks Automation

‘ Creating a Tool for Your Service Assigning Services to Tool Resources

Assigning Services to Tool Resources

You always assign Services to the Resources of a Tool, rather than to the Tool
itself. To assign a Service to a Resource:

1. Click the Resources tab in the Component View.

2. Double click on the Resource you want to assign the Service to. The
Resource should appear in thigject View

3. Click on the Services tab. Here you should find your Service in the list of
Services.

Select your Service's name and hold down the mouse button.

Drag and drop the Service icon onto the Resource icon (Dbjbet
View.

/~ TOM Builder =10] x|
File DObject Help

Tools I Hesnurcesl Dictionaries Services |F'r|:||:|erties| Heferencesl E dit I

demo. zample "
tom3 S . Pratocal T imer

oSS, Template

tornS 5. Werification

tornS S 0. Protocolt onitor

tomS S0 ProtocalSECS

torm551. SeczlnitiateProcesszing

tom5 571, SecsloopbackDiagnoztic

tormS51. SecsMatenalStatus —
tomS571. Secehd atiTransStatus

torn5 571, Secabultiblackinguire

tom557. S ecsPredefinedR eportz

tormS51.SecsReset

torm551.SecsServicePrograms

tom551.5ecs5PRUN

tom5571. SeceTimeT oCompletion

tomS 52 Gemdlarmbd anagement

tom55 2. GemClock, -
« | | _>I_I

| Loaded SMIF1 | & fastechstomiDrivers |4 Nodes

1. Click on the icon for the Service in tBéject View

4-11

Service Developer's Guide

Assigning Services to Tool Resources Creating a Tool for Your Service

2. Click theReferences tab to see the Resources appear under the Service
in theObject View . Under this tab, you now see all the Resources that
reference this Service.

Toolz I Hesnurcesl Dil:til:unariesl Servicesl Properties References | 1 I ’"

demo. zample

Your custom Service is still not ready to use until you have added all the
Attributes it requires.

NOTE You cannot add Attributes to a standard Service, only to a
custom Service.

4-12

Brooks Automation

‘ Creating a Tool for Your Service Creating a New Service Dictionary

Creating a New Service Dictionary

There are two types of Dictionaries in TOM Builder—Service Dictionaries
and Resource Dictionaries. They each hage@iceDictionary Property
that is eitheffrue or False . You establish this Property’s setting when you
first create the Dictionary.

A Service Dictionary is so named because it is a Dictionary for a set (a single
DLL) of Services. For instance, the SECS Standard Dictionary is a Service
Dictionary for the SECS Services provided with TOM.

A Service Dictionary defines the DataDefs used by a collection of related
Services. For instance, the SECS Standard Dictionary defines the DataDefs
used by SECS Services at levels 0 through 3.

You need to create a new Dictionary for your custom Tool. If your Tool has
DataDefs that are not defined in any other existing Dictionary (usually not
defined in SECS Standard Dictionary), you must create a Dictionary that
contains those DataDefs. You can have that Dictionary be a copy of the SECS
Standard Dictionary that you add your specific DataDefs to. The DataDefs
you create that are for your Service only are cafedvice Specific DataDefs

NOTE Developing Service Dictionaries is a specialized field. You
shouldnever modify the Service Dictionaries provided with
TOM. If, however, you are developing of a new collection of
TOM Services, you can copy the original Dictionaries and
alter the copies.

Keep in mind that a Service Dictionary is always self-contained—it cannot
reference other Dictionaries. Another type of Dictionary in TOM, the
Resource Dictionargan reference other Dictionaries.

Before you can associate a new Dictionary with a Service, you first create the
Dictionary:

1. Click on theDictionaries tab in theComponent View .

Service Developer's Guide

Creating a New Service Dictionary Creating a Tool for Your Service

2. Selecfile =>Create New Dictionary and fill in the name of the
dictionary.

Tools I Fesouces Dictionaries I Sewicesl F'ru:upertiesl Heferencesl E dit I
MEB ;I
Mitha W afgr bdasuntar
=R AN .+ Create Hew Dictionary |
Frometrix C
PST Lot S¢
Fudalph A Mame: |5tepperDictiDnary
SECS Star ettt .
StepperDic I Service Dictionany
El.t,jﬁ%EEﬁM Save Cancel |
1| | 3
| d:MfastechistomiDrivers |1 Modes

3. If the dictionary is associated with a particular Service, click in the
Service Dictionary check box to set this property Toue . Once you
make it aServicedictionary, you cannot assign it to a Resource.

Add Description of To add a description of the dictionary:
Dictionary 1. Click on theDictionaries tab.
2. Double click on the Dictionary name in the list. It should appear in the
Object View
4-14

Brooks Automation

Creating a Tool for Your Service Creating a New Service Dictionary

3. Click theEdit tab and fill in theDescription ~ property. If you decide
you want to change the settingS#rviceDictionary property {rue
or False), change it here.

P TOM Builder [_ O]

File Object Help

Tools I Hesu:uuru:esl Dictinnariesl Sewicesl F'ru:upertiesl Feferences Edit I

........... StepperDictionary Drescription |Di.:;ti.:.nar_-,| for the Stepper T ool
Servicelictionan |True

Jndo |

| Loaded 5 tepperDictionary | d:\fastechitomtDirivers |1 Modes

4. Go back to th@bject View and right click. Selecave from the
pulldown menu that appears.

Next, you assign the dictionary to the Service that later uses it.

Service Developer's Guide

‘ Assigning the Dictionary to a Service Creating a Tool for Your Service

Assigning the Dictionary to a Service

To assign a Dictionary to a Service, first be sure it is a Service Dictionary,
then:
1. Click on the Services tab in t@mponent View .

2. When the list of Services appears, double click on the Service you want to
assign the Dictionary to.

3. When the Service’s icon appears in @igect View , go to the
Component View and click on the Dictionary tab. A list of Dictionaries

appears.

4. Select a Dictionary in the list and drag and drop the dictionary icon onto
the Services icon in th@bject View

A2 TOM Builder I [=]

Eile Object Help

Toals I Flesources Dictionaries | Servicesl F"ru:upertiesl Heferencesl 1 | "I
|

SECS Standard
StepperDictionan

1] | H

| Loaded demao. sample | d:\fastechitomDrivers |1 Modes

Next, you must create a Resource Dictionary.

4-16

Brooks Automation

‘ Creating a Tool for Your Service Creating a New Resource Dictionary

Creating a New Resource Dictionary

A Resource Dictionary is quite different from a Service Dictionary. It contains
all Dictionary information required for a particular Resource of a Tool. Each
Resource has one and only one Resource Dictionary. That Resource
Dictionary can reference multiple Service Dictionaries. For instance, if the
Resource receives SECS messages, then its Resource Dictionary should
reference the SECS Standard Dictionary. If the Resource also uses, for
instance, the MES Services, since that set of Services use another Dictionary,
the Resource Dictionary should also reference the Service Dictionary for
MES Services.

In addition, you may have custom Service Dictionaries that work with your
own set of Services. The Resource Dictionary may also reference one or more
of those Service Dictionaries.

So that you can associate one or more Service Dictionaries with a Resource,
you first create the Resource Dictionary:

1. Click on theDictionaries tab in theComponent View .

2. Selecfile =>Create New Dictionary and fill in the name of the
dictionary.
#, Create Mew Dictionary I

MName: |5 IFDictionary

[T Service Dictionary

Save Cancel

Do not click in theService Dictionary check box. If you make it a
ServiceDictionary, youcannotassign it to a Resource; also, once itis a
Service Dictionary, you cannot make it a Resource Dictionary.

4-17

Service Developer's Guide

Creating a New Resource Dictionary Creating a Tool for Your Service

After you clickSave, you can see the Properties of the Service by double
clicking on it until its icon appears in th@bject View , then clicking the
Edit tab.

A= TOM Builder
Eile Object Help

SMIFDictionany

Building 5 tepperDichonary

Toolz Hesuurces] Dictinnaries] Semvices F'rcuperties] Fieferences Edit

Description |Dictiorary for SMIFs
Servicelictionary |Fa|ge

IInda

d:sfastechMomDnvers | 8 Modes

If you want the option of modifying DataDefs in a Service Dictionary, then
you should create a reference to that Service Dictionary in the Resource
Dictionary.

You create a reference to any Service Dictionary required by the Service the
Resource uses. Usually the only one you need to reference is the SECS
Standard Dictionary. However, in tdemo.sampl&ervice you set the
DataDefs in the Service Dictionary, so you need to have the Resource
Dictionary reference the Service Dictionary:

1. Once the Resource Dictionary appears in the list of Dictionaries, double
click on its name until its icon appears in tigect View

Click on the Dictionary icon in th@bject View

Find the Service Dictionary in the list of Dictionaries under the
Dictionaries tab; then select it and hold down the mouse button.

4. Drag and drop the Service Dictionary onto the Resource Dictionary.

Repeat the previous step for each Service Dictionary this Resource
Dictionary references.

6. Your Resources may also require the SECS Standard Dictionary if the
Resource uses a SECS/GEM/VFEI Service. If your Service clones and
executes a method of a SECS, GEM, or VFEI Service, or adds DataDefs to
or modifies DataDefs of one of those Services, you must include the SECS
Standard Dictionary in your Resource Dictionary. You should add other

Brooks Automation

Creating a Tool for Your Service Creating a New Resource Dictionary

Service Dictionaries to the Resource only if the Service documentation
specifically states that the Dictionary is required.

A= TOM Builder _ O] =]

File Object Help
Toalz I Resources Dictionaries | Sewicesl F'rn:-pertiesl Heferencesl E dit l

e ———
SMIFDictionary SMIFDictionary
StepperDictionary

......
------ StepperDictionary

| W

| d\fastechitomDrivers |8 Modes

1]

| Building StepperDictionary

7. Go back to th©bject View and right click. Selectave from the

pulldown menu that appears.
After you create a Resource Dictionary, you assign the Resource Dictionary to

Resources.

Service Developer's Guide

‘ Assigning the Dictionary to Resources Creating a Tool for Your Service

Assigning the Dictionary to Resources

To assign a Dictionary to particular Resources, first be sure it is not a Service
Dictionary, then:

1. Click on the Resources tab in themponent View .

2. When the list of Resources appears, double click on the Resource you
want to assign the Dictionary to.

3. When the Resource’s icon appears inGhgct View , go to the
Component View and click on the Dictionary tab. A list of Dictionaries
appears.

4. Select a Dictionary in the list and drag and drop the dictionary icon onto
the Resources icon in ti@bject View

5. If you are creating a custom Dictionary for a piece of SECS or GEM
equipment, be sure to assign 8&CS Standard Dictionary to its
resource or resources.

):’ TOM Builder M=

File DObject Help

Toolz | Resources Lichionanes | Servicesl F'ru:upertiesl Heferencesl E dit l

T SECS Standard
M | | 54| FDictionary
StepperDictionary

4| | > A | B

| Loaded SMIF1 | d:AfastechitormtDrivers | 46 Modes

6. IntheObject View and right click. Selecsave from the pulldown
menu that appears.

Now that you have some Dictionaries, you need to put DataDefs into them.

4-20

Brooks Automation

‘ Creating a Tool for Your Service Creating DataDefs

Creating DataDefs

What Can Your
Service Do with
TOM DataDefs?

Create DataDefs in
Your Service

Create DataDefs in
the Dictionary

A DataDef is like a template. Once you have defined a DataDef you can load
it into the Service specific area of the Service for customized use. You can use
DataDefs from other Services that your Service is working with as well as
DataDefs defined specifically for your Service in its own Dictionary.

Your Service can use DataDefs as templates for Dataltems it needs. Your
Service may:

« Use a subset of DataDefs from its own Dictionary
« Add DataDefs from another Service’s Dictionary

For example, your Service might copy the DataDefs uBdeipment
Constants from the SECS Standard Dictionary by “loading” them. The
Service can then use those constants.

Another example might be to use thiedD DataDef (an input to thEnable
Method of theGemAlarmManageme&ervice) to set up a particular list of
Alarms for that Service from within your Service.

To create DataDefs for your Service:

1. Create a constant for any DataDef for the Service (which you later add to
the database) or any DataDef the Service uses from a dictionary already
existing in TOM. Some examples of constants in the sample Service:

Private Const DD_DD1 = “DataDef1”
Private Const DD_CHILDA = “ChildDataDefA”

Private Const DD_CHILDB = “ChildDataDefB”
Private Const DD_DD2 = “DataDef2”

2. Later, inOnlnitialize , you load the DataDefs into the reference:
Set m_oDataDefl = srvLoadDataDef(m_oService, Nothing, DD_DD1)

Set Method = srvDefineMethod(m_oService, METHODNAME, Text")
srvAddDataltem m_oService, Method.Inputs, m_oDataDefl

3. If you have not already defined the DataDef in the database, you should
add it to the Dictionary associated with this Service using either the TOM
DB Editor or the TOM Builder. Refer to the next section (or the TOM
Builder Help file) for details.

If the Dictionary is a Service Dictionary, it must be self-contained—the parent
of a given DataDef must be defined within the same Dictionary if it is a
Service Dictionary.

4-21

Service Developer's Guide

Creating DataDefs

Creating a Tool for Your Service

By comparison, Resource Dictionaries are not self-contained. The parent of a
DataDef in a Resource Dictionary may be defined in the same Dictionary or
in a Service Dictionary.

This structure is designed to help you, the Service/Driver developer, create a
skeletal Dictionary that contains a structure that makes sense for the Service.
By forming the skeletal structure, you create rules that TOM Driver
developers can follow when creating Dictionaries for Service. More than one
Service can (and usually does) reference the same Service Dictionary. To add
the Service specific DataDef to the Dictionary:

1. Click on the Dictionaries tab in the Component View to see a list of Dic-
tionaries.

2. Double click on the Dictionary in the list that you want to add the
DataDefs to. The Dictionary should appear in@hgect View.

4= TOM Builder M=l

File Object Help

Toolz I Fesources Dictionaries I Ser'-.fi-:esl F'rn:npertiesl Heferencesl E dit I

----------- StepperDictionany

kB -
Mitto ' afer M ounter _I
Folariz Chuzter Dictionary

Frometrix Dictionan

PST Lot Sarter Dictionary

Fudaolph &utaEl
SECS Standard
StepperDictionary
StepperSMIF
Ih-1060

“| | b

| Loaded StepperDictionany

4-22

| d*fastechitomDrivers |1 Modes

Brooks Automation

Creating a Tool for Your Service Creating DataDefs

3. Inthe Object View, right click on the Dictionary name and s&lddt
DataDef .

A= TOM Builder M=] B

File Object Help

Toolz I Fiesu:uuru:esl Dictinnariesl Sewicesl F'ru:upertiesl Feferences Edit I

‘In |Di|:ti|:|nar_l,l faor the Stepper Tool
chionany |True
Add DataDef |
Erjr) Save | Cancel |
(Bt
Haste
Eremawe Lk o
Eeranme
| Loaded StepperDictionary | d:*FastechitomDrivers |1 Modes
NOTE For New Services
For a new Service, you must add the Service specific
DataDef.

4. When theadd DataDef dialog appears, to create th@vice
specific ~ DataDef, be sure you enter it exactly as shown below,
with a space between the words and a lowercase S starting the word

specific

“ Add D ataDef

M arne:

|Ser\-'i|:e specifid]

k. Cancel

5. After you click on OK, an icon for the DataDef should appear in the
Object View.

4-23

Service Developer's Guide

Creating DataDefs Creating a Tool for Your Service

6. Click on the DataDef’s icon; then go to the Component View and click on
theEdit tab.

):‘ TOM Builder M=l E

File Object Help
Toolz I Fles-:uurl:esl Dil:til:unariesl Servicesl F'n:upertiesl Fieferences Edit |

|E| ------ StepperDictionary Access|D |

: _ | AlowDuplicates [Falze
E— Service specific Canddd

|False
Cormrments |
Defaultyalue |
Deszcription IT op-level DataDef
Forrnat fList (0]
LinkChildren |T =
LoadChildren [True
b asirriLimn |
Minirriuinn |
M ame IS ervice specific

OrderChildrerEpdccessID ITrue

Sirmulatedy/ alue |

Itz |
WalueRequired |False
Cancel |
| Loaded StepperDictionary | d:\fastechitomtDrivers | 2 Modes

The editable properties of a DataDef appear in the Component View. For
the Service specific DataDef or any other parent DataDef, you must set
the required Properties:

0 Format —Must beList(0) for any top-level DataDef that has
children.

0 LinkChildren =~ —Must beTrue for any parent DataDef, including
the Service specific DataDef. When iTisie , TOM automatically
creates links between the parent DataDef and its children when you
instantiate the Tool that uses this DataDef.

0 LoadChildren —Must beTrue for any parent DataDef, including
the Service specific DataDef. When it iSrue , TOM
automatically loads the children when you load the parent DataDef.

4-24

Brooks Automation

Creating a Tool for Your Service Creating DataDefs

0 Maximum—For a parent DataDef, set to the maximum number of
children the DataDef can have. For a child DataDef, set to the
maximum value it can have.

0 Minimum—For a parent DataDef, set to the minimum number of
children the DataDef must have. For a child DataDef, set to the
minimum value it must have.

0 Name—Set to the name of the DataDef with the exact spacing and
capitalization you used when you created the DataDef.

Be sure to save the DataDef:

1. Click Save in the Component View.

2. Right click on the DataDef icon in the Object View and select Save.

Add Children to When you add child DataDefs, for the Service specific DataDef, you must

the Database have a child DataDef that has the name of the class. Fdethesample
Service, the child must be namsdmple(see below). This DataDef must also
be a parent, so it has thét(0) format and other settings appropriate for a
parent DataDef. Below this DataDef, you add the entire hierarchy of other
DataDefs that are specific to your Service.

):‘ TOM Builder

File Object Help

| Loaded StepperDictionany

Loading DataDefs 1. InOnCreate , you can load the DataDefs using tind_oadDataDef
in Your Service handler support routine.

4-25

Service Developer's Guide

Creating DataDefs

Creating a Tool for Your Service

Load a Top-Level
DataDef from
Dictionary

4-26

If the DataDef you are loading is immediately under a top-level Dictionary
object, you can pa$¢othing as the parent.

The routine returns a DataDef object that belongs to this Service, of type
tom.DataDef.

For example, to load tHSECS elements” , a top level DataDef in the
Standard SECS Dictionary, into tBECSElements variable, you enter:

Set SECSElements = srvServiceDictionaryRoot(m_oService)._
Iltem(“SECS elements”)

srvServiceDictionaryRoot returns the parent DataDef from the top
level under the Dictionary. Later this entire branch of the SECS Standard
Dictionary appears in your Tool’s Dictionary in TOM Explorer.

Brooks Automation

‘ Creating a Tool for Your Service Cloning DataDefs

Cloning DataDefs

You can create clones of DataDefs from the Dictionary to use in your Service.
You create a clone usirsgvCloneDataDef inside yourOnCreate handler
method.

ThesrvCloneDataDef routine takes these arguments:
« ToParert—Name of the service being developed.

«» FromDataDef—Parent DataDef of the collection of DataDefs being
loaded.

« NewName—Optional. Set equal to a string containing the name of the
new DataDef. If you leave out this argument, the routine uses the name in
FromDataDef

« Children—Optional. Set equal to a True if you want children defined,
False if not.

The routine returns a reference to a new DataDef object.

To make clones of the SECS elements in the Standard SECS Dictionary, you
first create a variable to receive the reference to the new DataDef object, then
usesrvCloneDataDef to clone the entire set of DataDefs:

Set m_oLocSECS = srvCloneDataDef(srvServiceDataDef(m_oService),
SECSElements.ltem(“SECS elements”), NewName:="My SECS elements”, Children:=T

You later see the clones as Dataltems in the Dictionary under the Service
Specific area for your service.

Once you have created the clone®irCreate , you have set up the “empty
shells” for DataDefs, but the actual DataDefs do not yet exist. Later, when
you clone the Method that uses these DataDefs, you actually fill in the
DataDefs and assign them Dataltems.

Now, you can use the DataDef clones within your Service.

4-27

Service Developer's Guide

‘ Creating Attributes

Creating a Tool for Your Service

Creating Attributes

What Can Your
Service Do with
TOM Attributes?

Create Attributes
in Your Service

Add Attributes to
the Database

4-28

An Attribute is a piece of information about the Tool or about a lower level
Service.

Your Service can do the following with Attributes:

Read values of Attributes from a lower level Service. For instance, you
can determine the comm port the tool is connected to over RS-232 cable
by retrieving thePortID Attribute of theProtocolSECService.

Set Attributes of a lower level Service to change its behavior. For
instance, it can set the value of the TotHaddress , which is an
Attribute of theProtocolSECSService.

Have its own Attributes, which you must add to the database using either
TOM Builder or TOM DB Editor.

Let’s take a look at how to create Attributes in your Service. For the sample
Service, you could create an Attribute that you set to enable or disable the
ToolEvent Event:

1.

To define the attribute inside the class, you can define constants and vari-
ables to represent the attribute:

Private Const TOOLEVENTENABLE = "ToolEventEnable"

Private Att_ToolEventEnable As Boolean

DefineToolEventEnable in the database using TOM DB Editor or
TOM Builder. When you define the attribute in the database, you also

assign it a default value, which becomes the attribute’s value after it is
initialized. For more detail, refer to the next section.

To add an Attribute of the Service to the database:

1.
2.

Click on theServices tab in theComponent View .

In the list of Services that appears in Geeponent View , double click
on the Service you want to add the Attribute to.

Brooks Automation

Creating a Tool for Your Service Creating Attributes

3. When the Service appears in theject View |, right click on the Service
icon and selechdd Attribute from the pulldown menu.

“, Add attribute =]

M arme:
IT-:u:uIE ventEnable

Cancel |

4. The Attribute icon should appear below the Service icon i@t
View. When it does, you can click tieglit tab to edit the properties of
the Attribute.

A~ TOM Builder

File Object Help

E% zample [demao.sanmple]

ToolE ventE nable

| Loaded demo. zample

4-29

Service Developer's Guide

Creating Attributes Creating a Tool for Your Service

5. Set theDefaultvalue , enter theName and seReadOnly to True or
False , and set the data type \rarType to a Visual Basic data type, such
asstring , Integer , orVariant

‘P TOM Builder i

File Object Help

Tools I Hesnurcesl Dictinnariesl Ser'-.-'icesl F'rn:upertiesl References

E% sample [demo. zample] Defaultyalue {True
Descriphion |
b ToolE ventEnable
Mame |T|:u:|IE vehtEnable
FeadOny |False
WarTppe |5tring
Save | Can
| Loaded demo. zample | d:\FastechstomiDiivers Iﬁ

6. Click Save in theComponent View .
7. Right click on the Service icon in tidbject View and selecBave.

After you have taken all steps in this sectiboglEventEnable is an
Attribute of your Service.

You can see the Attributes in TOM Explorer. For example, below you see the
Attribute from the sample Service.

E@y Attributes
- E ToolEventEnable = True

4-30

Brooks Automation

‘ Creating a Tool for Your Service Finalizing Tool by Releasing It

Finalizing Tool by Releasing It

When you have finished creating the Tool, you cannot use the Tool until you
release it, as follows:

1. Click on theTools tab.

2. Inthe list of Tools that appears in tbemponent View , double click on
the Tool you want to release. An icon for the Tool should appear in the
Object View

3. Click on the icon for the Tool and then click on Hulit tab in the
Component View .

4. When the Properties for the Tool appear in@heponent View , change
theReleased property toTrue .

& TOM Builder IS [=] E3
FEile Object Help

Hesnurcesl Dictinnariesl SErvicesl F‘rn:npertiesl Feference: Edit | ﬂ_hl

Description |

Developer |CSMachine

Manufacturer IT::u:-Ih-'Iaker, Inc.

HelpContest ||:|

HelpFile |

Fodel |

Released |True

Wersion |

ndo |

| Loaded Stepper | dMastechitomtDrivers | 3 Nodes ¢

5. Right click on the Service icon in tidbject View and selecBave.

If you have carried out all the preceding steps and released your Tool, you
cannot use it until you build the database.

4-31

Service Developer's Guide

‘ Building TOM Database (Containing New Tool) Creating a Tool for Your Service

Building TOM Database (Containing New Tool)

4-32

The Build operation creates a new STATIONworks Database. The component
files are inserted into the database.

STATIONworks cannot use the component files of the TOM Builder directly.
You must build a database before you can test it with STATIONworks.

Before you proceed to build, you can remove any excess Services or
Dictionaries that you are not using. Seleitd => Delete from the menu
to delete any object. This action pares the database down to only the
necessary components.

To build a TOM database:

1. Selecfile => Build Database... from the menu bar.

2. Inthe dialog box that displays, enter the name of the TOM database to
build. The default database name that appears is the one Brooks provides.
Be sure to assign your own database name. Do not overwrite the default
database

NOTE You can rebuild the database this same way after adding a
single Tool or several Tools. Brooks advises that you test
each new Tool before checking in your database.

3. To test each Tool, you should open the Tool in TOM Explorer and run the
Verification Service on each Service for each Resource of the Tool.

Once you have built the database and have tested each Tool, you are ready to
add thetbf files TOM Builder has created to the revision control system.

To alter the database, check out thé files, edit the database, and then
rebuild it.

Brooks Automation

.4 4
Debugging/Testing Your Service 5

Introduction

Topics in This Chapter

Preparing to Use Your Service in TOM Explorer, p. 5-2
Running Your Service in Debug Mode, p. 5-4
Executing Methods through TOM Explorer, p. 5-8
Verifying the Service from TOM Explorer, p. 5-11
Exiting TOM Explorer, p. 5-14

Compiling Your Service—Final Compile, p. 5-15
Testing Your Service, p. 5-15

Using Your Service in an Application, p. 5-15

After you have completed the handler methods of your Service and it has no
syntax errors, you are ready to Debug it in runtime mode. In this chapter, you
see how to use TOM Explorer for debugging.

5-1

Service Developer's Guide

‘ Preparing to Use Your Service in TOM Explorer Debugging/Testing Your Service

Preparing to Use Your Service in TOM Explorer

Make Service
Available to TOM
Explorer with TOM
Builder

5-2

Before you can use your Service in TOM Explorer, you must add the
following information about your service to the database using either the DB
Editor or TOM Builder:

» ServiceClassName — Set to theNameproperty of the Visual Basic class
module. This property applies to only a single service within your project.

CAUTION

Remember to place your unigue prefix at the
beginning of your DLL and your Service name.

« ServiceProvider = —TheProject Name you assigned to the Visual
Basic project earlier. Brooks recommends that the .DLL's root name be
the same as the name of the Visual Basic project. The
ServiceProvider mustbe the same as the Visual BaBioject
Name.

The samérovider applies to all the services in your project.
You put this information into the database using either the TOM Builder or
the TOM DB Editor.
To make it available to TOM Explorer, you must add your service to the TOM
database. To add the service:
1. Click the Services tab.
2. Go to the menu bar and seleit¢ => Create New Service

3. When the Create New Service dialog appears, entérdhider and
Class in the edit boxes, as shown below:

i, Create New Service |

Frovider |,:|E,-,-,,:,

Clazz Isampleﬂ

Save Cancel

Brooks Automation

Debugging/Testing Your Service Preparing to Use Your Service in TOM Explorer ‘

Set Required
Attributes in
Database

The name of youProvider should contain the company prefitY)
followed by a code that identifies the type of Service or Services in the
file.

TheClass is simply the root name of thels files for the service.

Click Save to add the Service to the database.

Follow the instructions provided with TOM Builder to associate Tools and
Resources with your Service.

Be sure you have set Attributes your Service requires in the database
using either TOM Builder or TOM DB Editor.

For the sample Service theolEventEnable attribute should already
be set tarrue .

5-3

Service Developer's Guide

‘ Running Your Service in Debug Mode

Debugging/Testing Your Service

Running Your Service in Debug Mode

Debugging a Service is not exactly the same as debugging any other Visual
Basic program. What is different about it? Well, first, you must fully compile
the Service to make it available to the Tools you have associated it with in the

database.

Then your Service doesn't really run unless your Tool is using it.

So, how do you debug the Service? You carry out a series of steps:

1. Begin by creating a shortcut to TOM Explorer and setting it to run the

database containing your Tool. Since that may or may not be the same as
the standard database, be sure to set the path to the database uging the
option and following it with the full path to the database (or the local file

name if it is in the same directory as TOM Explorer):

C:\FASTech\TOM\bin\texplorer.exe /d tomDB.mdb

TOM Explorer Properties

General Shortcut |

P

TOM E=plarer

T arget type:

T arget location:

Application

Bin

| B it Separate Memen Space

Start i

Shortcut Key: IN ahe

Hur:

Ie:‘-.F.ﬂ-.S TechhTOMEin

]

Find T arget... | Ehangelcnn...l

I Mormal wirdow

5-4

ak. i

Cancel |

Brooks Automation

Debugging/Testing Your Service Running Your Service in Debug Mode

2. Inyour class code, set some breakpoints in Visual Basic. It's a good idea
to put a breakpoint at the beginning of each handler method and at key

lines inside them.

3. Gotothe Visual Basic menu bar and selegh => Start with Full
Compile . This way, your Service is completely compiled for your Tool to
use.

5. demo - Microsoft Yisual Basic [design]
File Edit “iew |nzert WEGW Toolz Adddins Help

,, Start F&
= | @l E"l El Iill | Start Wwfith Eull Compile Chrl+F5
Erd

ElEstart: ShittrES Wigw F Wiew Cod I
Ohject: I[Eeneral]]| e I —
Step Into Fa — sample_clz sample

Cprion Explicil oo fye Shift+Fa

izl ol em
' Declare a re: (=N LR EE e |+ el

Private m oTOM Toggle Breakpoint £

=
Clear &ll Breakpointz Chil+Shift+F3
' Chiject Mames Ay _I

ﬁﬁ% Handler.bas HandlerSupport
ﬁﬁ% Smain.bas Handlerkd ain

g SAfinda

Privare SERVICI Seb[Heqft Statement [t +ES
o I Exb STatermemrt

Priwvate Const 3BV LOOPEACK = "SecsLoop
Private Const 3BV _PROTOCOLIECS = "Prot

'Boolean that indicates whether or not
Priwvate rn_DFull‘i.Ferficatinn L= Boolean

'Datalef names

Private Const DD _DD1 = "Datalefl"
Priwvate Const DD CHILDA = "ChildDatale
Priwvate Const DD CHILDE = "ChildDatale
Private Const DD DDz = "DataDefi™

Priwvate Const ATT EVENT EMAELED = "Too
Private Const METH METHOD1 = "Method 1
Private Const METH METHODZ = "Method 2
Private Const METH METHODS = "Method 3
Private Const EVENT CCNNECT = "Conneect

' Attributes of Zervice
Private Attt ToolEventEnalle As String

4. Notice that nothing appears to be happening. To see action in the
Immediate window, start TOM Explorer and open tinemediate

5-5

Service Developer's Guide

Running Your Service in Debug Mode Debugging/Testing Your Service

window. In a moment, th€reate Tool Object window appears and
your Tool should be in the list of Tools. Select your Tool. To run the
demasampleservice, select theétepper Tool.

5. When the Visual Basic debugger stops on the first breakpoint in your code,

start stepping through the code. You'll step throOgkereate |,
LetAttribute , and therOnlInitialize , in that order. Then you'll step

through them again—why? Because the TOM Explorer runs them for each

Resource associated with the Tool and the Stepper Tool has two
resources—SMIF1 and SMIF2.

7y demo - Microszoft Visual Basic [break]
File Edit “iew Inzert Hun Toolz Adddins Help

B i e T SRR S

Object: I[Eeneral] j Prioc: IEetAttlihute j
End Sub _ —
Immediate Ed
FPuhlic Function GEtAttrihutEiByﬁhﬁmnﬂammaGemmmum ."|
-Dehug.Print "Entering GetlAtt - =
Jelect Case Attributellzme Entering (nCreate |

Leaving OnCreate

Entering Letittribute
Leaving LethAttribute
Entering OnlInitialize
Leaving Onlnitiali=ze
Entering OnCreate

Leaving OnCreate

Entering Letittribute
Leaving LethAttribute
Entering OnlInitialize
Leaving Onlnitiali=ze

Caze ATT EVENT ENAELED
GetdAttribute = Att T
Caze Else
Debug.Print "o suck
End Select
Debug.Print "Attribute 1= ",
Debug.Print "Leaving GetliAttr
End Function

Public 2ub OnlInitialize()
Ditm localittribute As 3trinc

Debug.Print "Entering OmInit

' Perform initialization ths
' set and/or other services

' Here is how to check to be
' If the serwvice 1=z present,
srvEequirediervice m o3ervic
srvBRequirediervice m oServic

6. You may see some of the text printed toltheediate window print
more than once. If you do, it is because TOM Exploruts Refresh

5-6

Brooks Automation

Debugging/Testing Your Service Running Your Service in Debug Mode

option is on. You can turn it off by selectinjew => Options from the
menu bar, going to th@eneral tab, and then toggling off thiuto
Refresh check box.

7 TOM Explorer options |

General | Methndsl Euentsl Errars I Messagesl

Object icong — Showe Service objectz
" None ¥ LevelD
" Small vV Levell
i* Laige v Level 2
v Level 2
[Auto refresh g ::::::é
¥ Eull verification

Cloze

7. Continue to step through the code and you see TOMsritAttribute
twice, once for each Resource.

vy demo - Microsoft Yisual Basic [break]
File Edit “iew Inset Bun Toolz Addln: Help

i U S e S Y 224 3 e

i zgample |0 x|
Object: I[Eeneral] j Froc; IEEhﬁtttlihulE j
End Sub _ —
Irmrmediate
Puhlic Function GEtAttribute(Bgr‘i.iIdemn.sample.Eet&ttribute |
Debug.Print "Entering GetdAtt - -
Jelect Case Attributelame Entextflng thﬂttrlhute -
Case ATT EVENT ENAELED Attr:f.hute i= TQDlEventEnahle
Getittribute = Att T Leaving GetAttribute
Case Flse Entering GetAttribute
Debug.Print "No suck Attribute iz ToolEwventEnable
End Select Leawing Getittribute
Debug.Print "Attribute iz ™,
Debug.Print "Leawving Getlittr
|En|:i Functind

5-7

Service Developer's Guide

Executing Methods through TOM Explorer Debugging/Testing Your Service

Executing Methods through TOM Explorer

After TOM has retrieved the Attribute settings, it waits for you to take action.
The Tool displays in TOM Explorer.

:‘1—" TOM Explorer [d:\fastech\tom\bintdemo.mdb]
File “iew Object Help
|TEIM ohjects Froperties of tom. T ool object 'Stepper’
TOk |Methnds| Eventsl Errors I Messagesl M ame | W alue |
| CurrentState ClazsMame = tom. T...
ﬁ Stepper Dezcription
Licensed Falze
HelpContext 1]
HelpFile
b odel
M ame Stepper
TypeM ame Stepper
Werified Falze
Werzion

1. Now, try expanding the Tool. Find the Methods under one of the
Resources. Right click on the Method and setgetute from the pull-
down menu.

:‘.!—'" TOM Explorer [d:\fastechitomibinidemo_mdh]
Eile Wiew DObject Help

|TOM ohjects Propertiez of ton. Methiod object
TOM | b ethods | Events | Errors | Meszzages | M arne | ' alue
5 :I Cloned Falze
El@y b ethods CurrentState Clazzhz
: . D ateCompleted 0 [Meve
E| r DateStarted 0 [MNewve
: cription & Sarmp
Egpand bled True
Lollapse rogress Falze
Help on Object... & b ethiad

ify * 2 [tomM

vice. M ame zample
SupprezsEnableCheck. Falze
Tag*® [Empty]
Yerified Falze

1| | L'LI 1] |]

2. Ifyour code stops at a breakpoint, click on the Continue icon in the Visual
Basic debugger.

5-8

Brooks Automation

Debugging/Testing Your Service Executing Methods through TOM Explorer

3. You should be able to see the Service proceeding in the code and printing
statements about where it is into thenediate window.

7y demo - Microsoft Yisual Basic [run]
File Edit “iew |nzett Bun Toolz Addin: Help

= EElE] Bl =] Sal =lmlEwz=EEE

Dbject: I [General] j Froc: I ICompleted j

Jet VerifyvingMethod = SrVCanEHEEhDdI:m_DSEj
VerifyvingMethod. Tag CaseEnd

srvverified m_n:-Servin::E
Exit Sub
End Select

[mmediate

<Running: _|
srvExecute VerifyingMethod, m oders Lttribute is ToolEventEnsb le j
Leaving Getittribute
Erranrap: Entering OnExecute
Dim ErrorZtate As t Errordtate Method 1 Executing
srviaveError3tate Error3tate ChildDatabefi: 50
Set ExecuteMethod = Nothing ChildDataDefE: 100

srvRestoreError3tate Erroritate
srvExtendError "1lVerifv"

Leaving OnExecute
Entering OonMethodCompleted Test
Completing Test

End Sub Legving OnMethodCompleted
Priwvate Sub lCompleted(ByvVal Cowmpleted! -
Dim Finished3teps Az Boolean 1|| M

Dim ExecuteMethod ks tom.Method

If [(CompletedMethod.Error.ErrorCode <> 0] Then -
4 | 1Y

You can see that whewethodl executes th&est method, TOM sends
program control int@nMethodCompleted for Test .
OnMethodCompleted then carries out end tasks fiast .

5-9

Service Developer's Guide

Executing Methods through TOM Explorer Debugging/Testing Your Service

4. As each Method completes, TOM Explorer pops Metaod
Notification to show it has completed, first fidiethodl , then after
you acknowledge that one by clicking OK, anotherTfest .

ﬂ Method ‘Method 1° notification 7| x|

DateCompleted [7/15/97 4:02:14 PM
i) Method 'Test' notification 2| x|

DateCompleted [7/15,/97 4.01:56 PM
DateStarted |7/15/97 4:01:47 PM

Description |Sen|:| the loopback diagnostic meszsage. and verify that

Ok

5. To see the results of runnifgthodl , you can click on the Methods tab
and expand each Method shown there.

:‘.!—'" TOM Explorer [d:\fastechitomibinidemo_mdh]

File “iew Object Help

|h-1 ethod objectz completed and logoed Properties of bom. bethod
TOM Methods | Eventz | Errors | Meszages | M arne I Wall
| Claned True
CurrentState Clas
DateCompleted ki
DateStarted kL
Drezcription Sen
Enabled True
InProgress Falz
M ame Tesl
Motify = 2 [tc
" Service. MName Sec
E@ Inputs SuppressEnableCheck Fals
: Tag*® (Erm
IEl * D ataD e Werified Tre
. ChildD ataDiefé = 50

E— ﬁ' ChildCr ataDefB = 100

4l I b

6. Execute the other Methods to see the messages that appear in the
Immediate window.

7. If you have equipment connected, you may want to test Events in your
Service by forcing the equipment to trigger one.

5-10

Brooks Automation

‘ Debugging/Testing Your Service Verifying the Service from TOM Explorer

Verifying the Service from TOM Explorer

Before you proceed to verify the Service, you should decide whether or not
you want to run a full verification. You can toggle this option in TOM
Explorer by selectinyiew => Options from the menu bar, going to the
General tab. Toggle on or off thEull Verification check box.

? TOM Ezplorer options EE

General |Methnds| Eventsl Erors I Messagesl

Ohject iconz — Show Service objectz—
= Mone [V Levell
= Small ¥ Levell
& Large v Level 2
Vv Level3
[Auto refresh I'; t::::é
¥ Full verific:ation

Claze

5-11

Service Developer's Guide

‘ Verifying the Service from TOM Explorer

Debugging/Testing Your Service

1. Expand the Resource and find your Service under it.

;‘.!—'" TOM Explorer [d:\fastechi\tom\bhintdemo_mdh]
File “iew Dbject Help

|TOM objects
TOR |Methn:u:|s| Eventsl Errars | Messagesl

Propertiez of

M ame

E ----- ﬁ Stepper
EI]\I Dictionaries

@ Reszources
-

Collapze
Help an Okject...

Clone
HelmamSemize..

CanClone
ClazzM ame
Clared
Comments
CurrentState
Dezcription
Drictionank.ay
DictionaryM ame
HelpContest
HelpFile

F.en

Lewvel

M ame
Resource.Mame
ServicePravider
YerficationComple
Werified

Werzion

i B

T ool object 'Stepper’ configured az type 'Stepper’

2. Right click on the Service and sel¥etify

223 objects | 205PM

from the pulldown menu.

Brooks Automation

Debugging/Testing Your Service Verifying the Service from TOM Explorer

3. When the Visual Basic Debugger stops on your first breakpoint, it will be

in OnVersion , which it runs first. It then proceeds @nVerify . You can
see the trace statements in ybuimediate window.

[mmediate

|<Break>

L

Entering Version
Leawving Version
Entering Version
Leaving Version
Entering OnWerify
Entering CnExecute
Method 1 Executing
ChildDatalefi: 50
ChildDatalefE: 100
Leaving OnExecute
Leawving OnWVerify
Entering COnMethodCompleted Test
Completing Test
Entering OnMethodCompleted Method 1
Entering CnExecute
Method 2 Executing
Entering OnExecute
Method 3 Executing
Entering OnMethodCompleted HMethod 3
Comwpleting Method 3
Entering CnMethodCompleted Method =2

-

XN [

Notice that the verify process executes each method and when a method
has been cloned, then executed, it @nslethodCompleted

After it verifies the first Method, notice that TOM lea@sverify and
takes all other verification action @nMethodCompleted . In the sample
Service,OnMethodCompleted callsIVerify to continue the
verification process. The messages shown itnthediate window
confirm that the Service operates as intended.

5-13

Service Developer's Guide

‘ Exiting TOM Explorer Debugging/Testing Your Service

Exiting TOM Explorer

When you are ready to exit TOM Explorer, selgtt => Exit from its
menu bar and watch as the Service jumps@ntterminate

i sgample - 1O]

Object: I [General] j Froc; I OnTerminate j

Casge "Method 37 -
Debug.Print "Completing Method 37
srvCompleted InvokingMethod
End Zelect
End If
End Sub

Fubhlic Zub OnVerify (By (hl=eEE

Dek Print "Ent IdemuﬁamﬂaDnTmmMam _"|
ebuy.Prin nter
=

m oFullVerficatior| Entering OnTerminate
RS b ge-iloa | Legving OnTerminate
Debug.PFrint "Leavi

End Zub

Fublic Function Versic
Debug.Print "Enter
VYersion = Srvwers
Debug.PFrint "Leavi | -

End Function
4]] M

Fublic Zub OnTerminate ()
-Dehug.Print. TEntering OnTerminﬂtEﬂ
Set m oService = Nothing
Fet m oLoophack = Nothing
Set m oProtocol3ECS = Nothing
Debug.Print "Leaving OnTerminate®
End Sub

Fubhlic Subh OnSubscribedEwvent (EyWal Ewvent As tom.Ewvent)

Debug.Print "Entering OnSubscribedEvent

On Error GoTo ErrorTrap

KN 2

Step through the remainder of your code and wheferminate completes,
TOM Explorer terminates.

Brooks Automation

‘ Debugging/Testing Your Service Compiling Your Service—Final Compile

Compiling Your Service—Final Compile

You can compile your Service as an in-process OLE server or an out-of-
process OLE server.

The differences between the two types of OLE servers are delineated in
Microsoft's Visual Basic Programmer’s GuidendVisual Basic Professional
Featuresguide.

Generate DLL To generate the DLL for the Service, go to your Visual Basic project and
selectFile =>Make demo.dll

The DLL file name should use the unique prefix you chose for your
organization. It should ideally be the same as the project name in the
Options window in Visual Basic.

NOTE When you compile your service DLL, the compiler automatically
registers it on the machine you compile it on. However, if you
want to use that DLL on another machine, you must be sure you
register it by hand usinggsvr32.exe

If you did not seVersion Compatibility to Binary

Compatibility when you created your Visual Basic project
(seeCreating References for Your Projept 2-5), when you try to
use your custom Service on another machine, you will not be able
to successfully register the DLL.

Testing Your Service

To test your Service, you can:
» Use TOM Explorer—As shown in this chapter.

« Write your own application to run the Service. If you developed it for a
particular tool, test it with that Tool.

« Write another Service that calls your Service (like an application), but that
you run from TOM Explorer. This way, you can avoid writing an
application; TOM Explorer becomes the application that runs your
service.

Using Your Service in an Application

To use your service in an application, refer toTibel Object Model (TOM)
Application Developer’'s Guide

5-15

Service Developer's Guide

.44 4
Reusing Existing Services in Yours: 6
Containment

Introduction

Topics in This Chapter

Choosing a Related Standard Service, p. 6-2
Writing the Container Service, p. 6-3
Writing Handler Methods for Low Level Services, p. 6-6

Here’s the scenario: You've been using standard Services to create a driver,
but now you find that your piece of equipment has a capability (or requires a
SECS message) that does not have a corresponding TOM Service. You've
considered writing that Service from scratch, but it is so similar to one of the
standard Services that you want to use that standard Service—maybe simply
modify it. You can do that rather easily by containing the standard Service
within your custom Service code.

This chapter presents how to contain an existing Service inside a custom
Service.

NOTE The complete code for the sample container Service is
included in Appendix B.

It refers to the container Service provided under
\FASTech\TOM\Dev\Samples\Contain\nabd the Tool that accompanies it
under\FASTech\TOM\Dev\Samples\Contain\Drivers

6-1

Service Developer's Guide

‘ Choosing a Related Standard Service Reusing Existing Services in Yours: Containment

Choosing a Related Standard Service

Suppose your Tool requires a series of commands under a Remote Commands
message. Most of the commands require an S2F21 message, so for them you
could use th&emRemoteContr@ervice, which let's you set an Attribute
calledUse S2F21 toTrue orFalse (see next illustration). You set this
Attribute toTrue and you're all set, right? Not exactly. One command on the
Tool, PP-SELECT, requires an S7F1 message, one without a corresponding
standard TOM Service.

|_=-—_| ----- % GemAemateControl

E@ Attributes

--------- E Uzes S2F21 = Falze
E@’ Methods

To determine the solution to this type of problem, ask yourself what you
would do if the Tool were entirely compliant with the standard. If you would
use a particular Service, then that is the Service you should try to contain.

In this case, what you really needismRemoteContr@lus an additional
command, a variation c@emRemoteControl

So now what do you do? If only you could @emRemoteControl

But you actually can use it! You can contain it inside a custom Service and
delegate particular aspects of your Service’s capabilities to it, letting
GemRemoteContraarry out the tasks it knows how to execute. The
remainder of your Service need only handle additional tasks your equipment
requires.

When choosing a related Service, you should identify:
« What Service would you use if the Tool were entirely SECS compliant?
« What message are you trying to find a Service for?

« Is there an existing Service that contains most of the capabilities you
need?

If you find a Service that @mlmostwhat you need, you can then contain the
Service whose capabilities you want to emulate inside your custom Service,
as shown in the pages that follow. The resulting Service is essentially a
container for the original Service.

6-2

Brooks Automation

‘ Reusing Existing Services in Yours: Containment Writing the Container Service

Writing the Container Service

Create Service in
the Database

Create Required
Dictionaries

Create Handler
Methods for
Service

Let's see how you could write a Service that is a variation on
GemRemoteContrdor the piece of equipment presented in the previous
section.

Initially, you create the container Service the way you would any other:

Create the Service in the database. Assign it the same name as the Service
it is based on. In this case, the Service must be named
GemRemoteControl

Assign a unigu€lass name for the Service, such as
NV10GemRemoteControl . The name need only be unique within the
particular Service DLL you are creating, so you can give it the original
Service's name as long as it is in a separate DLL.

Assign a uniqu®rovider name for the Service, which should be the

root name of the Visual Basic DLL, in this ca$¢10.

Assign the Service to the Tool in the database.

If the Service requires Attributes, create them in the database. For this
container Service, you need a single Boolean Attribute calied
S1F21.

Your container Service may also require access to existing Dictionaries or a
unique Dictionary of its own. To handle this situation, you need to:

Create your own Dictionaries if you need them—Service Dictionaries and
Resource Dictionaries.

Add DataDefs to the Dictionaries
Assign Dictionaries to Services

Assign Dictionaries to Resources

For details, refer to thEOM Builder User’s Guidélelp file.

You need to create the standard handler methods for a container Service:

1. To use the corresponding handler method from the original Service inside

your Service, you would begin by referencing the original Service’s DLL
in the Visual Basic program by selectifigols => Reference from the
menu bar.

Declare a private object of a type based on the original Service. In this
case, the object type G&&mRemoteControl .

You can refer to the original Service as a base for the new Service, so let’s
name the objecin_oBase and declare it using the full path to the Service
in TOM, which is theProvider , dot, theClass :

6-3

Service Developer's Guide

Writing the Container Service

Reusing Existing Services in Yours: Containment

6-4

' Below is the standard service that this one "contains"
Private m_oBase As New tomss2.GemRemoteControl

In a moment, you can use tine oBase object to refer to the handler
methods in the original Service.

You then declare theERVICE_NAMERNd the command to be passed to the
Method,METHOD_COMMAND

' Object names
Private Const SERVICE_NAME = "NV10.NV10GemRemoteControl"
Private Const METHOD_COMMAND = "Command"

Create the usual Service reference:

' Objects referenced
Private m_oService As tom.Service ' Service owning Me

Inside the new Service@nCreate , you need to take all of the actions that
the original Service takes in i@ Create and a few more. You use the
m_oBase object to call th®©nCreate handler method from the original
Service, thus executing that handler method within the container Service:

m_oBase.OnCreate Service

You can then add custom code to the new Service to complete its
OnCreate handler method.

For bothGetAttribute andLetAttribute handler methods, since you
are using only the Attribute from the original Service and no additional
ones, every time your Service is retrieving or setting an Attribute, it simply
needs to call theetAttribute or LetAttribute handler method of
the original Service. So each of these handler methods, shown below, calls
the corresponding handler methods from the original Service using the
m_oBase object:
Public Function GetAttribute(ByVal AttributeName As String)
As Variant

GetAttribute = m_oBase.GetAttribute(AttributeName)
End Function
Public Sub LetAttribute(ByVal AttributeName As String,
NewValue As Variant)

m_oBase.LetAttribute AttributeName, NewValue
End Sub

The same applies to ti@mMethodCompleted andOnVerify handler
methods, shown here:
Public Sub OnMethodCompleted(ByVal Method As tom.Method,
ByVal InvokingMethod As tom.Method)
m_oBase.OnMethodCompleted Method, InvokingMethod
End Sub

Brooks Automation

Reusing Existing Services in Yours: Containment Writing the Container Service

Public Sub OnVerify(ByVal FullVerification As Boolean)
m_oBase.OnVerify FullVerification
End Sub

None of these Services need do anything more.

Inside the sample container Serviag@igExecute , you need to determine
when to take action other than that in the original Servigefsxecute .

In this example, if the operator is activating a resource, which requires the
PP-SELECT command, then you need to take the special action that
forced you to create a new Service. Otherwise, you can call the
OnExecute of the original Service using tine_oBase object. The code

for thisOnExecute would be structured as follows:

Public Sub OnExecute(ByVal Method As tom.Method)
' If activating a resource, execute local function,
' otherwise delegate action to contained class.

If Method.Inputs.ltem("Commands").ltem(1)._
Name = "PP-SELECT" Then

ExecuteS7F1 Method
Else
m_oBase.OnExecute Method
End If
End Sub

TheExecuteS7F1 handler method executes the custom actions in this
container Service.

6-5

Service Developer's Guide

‘ Writing Handler Methods for Low Level Services Reusing Existing Services in Yours: Containment

Writing Handler Methods for Low Level Services

If the container Service you are writing is a low level Service (Level 1 or 2),
you may need to write or call the original Service’s protocol level handler
methods that interact with tiR¥otocolSECSService:

= OnPrimaryln

= OnPrimaryOutError
= OnSecondaryin

= OnSecondarylnError

The sample container Service hasomsecondaryin handler method. For
more information on this handler method, refeBECS Handler Methods
Grouped by Functiarp. 5-2, in théeTOM Service Developer’'s Reference

6-6

Brooks Automation

Dealing with Errors 7

Introduction

Topics in This Chapter

This chapter presents how to work with specific TOM objects inside your
handler methods. For instance, it discusses:

Deciding to Raise, Extend, or Trigger an Error, p. 7-2
Extending an Error, p. 7-3
Raising an Error, p. 7-6

Triggering an Error, p. 7-8

7-1

Service Developer's Guide

‘ Deciding to Raise, Extend, or Trigger an Error Dealing with Errors

Deciding to Raise, Extend, or Trigger an Error

If any other type of error occurs at any time in your Service, you send
program control to an error handler. Your error handler can take care of the
error in one of these ways:

« Extend the error
« Raise the error
« Trigger the error

Let's get a quick definition of each of these actions. It is important to realize
that in most situations TOM is above your Service in the call stack, because
usually TOM calls your Service handler methods (suchré3eate):

« If you extend an error, you add information to it (as text) and pass that
information along with the error up the call stack. You use this technique
if a Service your Services uses finds the error. For more information see
Extending an Errgrp. 7-3.

» When you raise an error, you raise a Visual Basic runtime error to the next
highest level, which in this case would be the TOM application using your
Service. You raise an error if your Service is the first Service to find it
(rather than a lower level Service passing it to yours). For more
information, sedRaising an Erroyp. 7-6.

NOTE Tip — Raising vs. Extending an Error

When should you raise an error instead of extending it?
If you detect the problem within your own Service, you
should raise the error. If you do not raise the error, Visual
Basic assumes you have handled it.

If a lower level Service detects the problem, your
Service shouldot raise it, but extend it—effectively
passing the error up to the next level. If you do not
percolate the error up, Visual Basic assumes you have
handled it. If you do not handle it and Visual Basic ends
up percolating the error up, it could generate issues later.

« If you trigger an error, you create an Error object and trigger it instead of
letting TOM take its usual default action. For more information on when
and why you would take such action, refeftiggering an Error p. 7-8.

7-2

Brooks Automation

‘ Dealing with Errors

Extending an Error

Extending an Error

Call
srvExtendError

Pass Your Handler
Method Name as
Argument

In most cases, you deal with an error by aborting your handler method and
sending control to an error handler. The error handler then propagates the
error up the call stack. You would do this with an error raised by another
Service used in your Service. Since TOM is above your Service in the call
stack, the error is extended to TOM. TOM traps the error and takes
appropriate action.

To extend an error, you call teevExtendError ~ handler support routine
from inside your error handler:

On Error Goto ErrorTrap

ErrorTrap:

srvExtendError “IComplete”

You use this routine to augment the Visual Basic Err object with custom
information you want passed up the stack. The syntax for the routine is:

Public Sub srvExtendError (RoutineNamé\s String, OptionalNumbery_
OptionalHelpFile, OptionalHelpContext OptionalDescription
OptionalParamgy

RoutineName-Name of routine or handler method extending the error.
OptionalNumber—Numeric code of error.

OptionalHelpFile—Name of Help file containing help for the error.
OptionalHelpContext—Help context ID of help for the error.
OptionalDescriptior—String containing description of the error or
number containing the ID of the description in the resource file.
OptionalParams—The parameters to insert into the description. For more
than one, pass them as an array.

The first argument is required and should contain the name of your routine or
handler method. The name gets added to the error description as the error is
propagated up the stack, so you can trace the source of the error.

NOTE Tip—Always Call srvExtendError in Your Error Handler

You can trace the source of any error in your Service as long
as you consistently include an error handler in your handler
method and calrvExtendError ~ from that error handler.

7-3

Service Developer's Guide

Extending an Error

Dealing with Errors

Use Description
Argument to
Identify Error

Ensure Err Object
Contains Correct
Information

All the other arguments are optional. The most commonly used optional
parameter i®escription . This parameter can be a string describing the
error or a number used to locate the error string in the resourcil€.
included in your Visual Basic project.

The description string can contaim¥arameters (whereis a digit from 1
through 9). You pass the parameters to substitute for each #4eParams
argument, as shown in the example below:

ErrorTrap:
srvExtendError “IComplete”

Description:="The %1 Service found an error using %2 _
resource while the %3 Method was invoking %4 Method”

Params:=Array(m_oService.Name, m_oService.Resource.Name,__
InvokingMethod.Name, Method.Name)

The parameters you pass withrams should always include your Service’s
name, the Resource name, the Method name, and any relevant Dataltems.

Because you are extending the error, it is important that the Visual Basic Err
object contain the correct information when you extend it. You often find you
need to take other action that could inadvertently clear the Err object and
destroy the error information that you want to report. Visual Basic
automatically clears Err when the object you have created is destroyed at the
end of the handler method. The steps you should take inside the error handler
to ensure the Err object remains available are:

1. Save the error state, storeckin , so that later you can restore the error
state. For instance, you could create a variable nafnedState of the
t_ErrorState type. You would pass this variable to the
srvSaveErrorState handler support routine. The syntax for that rou-
tine is:

Public Sub srvSaveErrorState(ErrorStateAs t_ErrorState)
The single argument it takesksrorState at_ErrorState structure.

The error trap would start as follows:

ErrorTrap:
Dim ErrorState As t_ErrorState
srvSaveErrorState ErrorState

2. Destroy the object associated with the error state by settingnitttong
Set TheMethod = Nothing
In your Service, the object you created withgheCloneMethod or

srvCloneEvent handler support routine is the object you must remove
by setting it taNothing . If you do not remove these objects, they hang

Brooks Automation

Dealing with Errors

Extending an Error

around in memory and could eventually cause problems. If you did not
create any objects, then you can skip this step.

3. Restore the Err object in tRerorState variable using
srvRestoreErrorState

srvRestoreErrorState ErrorState

4. Extend the error usirggvExtendError and passing it the name of the
handler method that the error came up in, suchn&secute :

srvExtendError "OnExecute"

The complete code for the error handler should include the code that follows,
only in yours you should replasgé/Method with the object you created
using eithesrvCloneMethod or srvCloneEvent

NOTE Your code should include the lines written below, only it
should replac& heMethodwith the appropriate object and
Routinewith the name of the handler method.

ErrorTrap:
Dim ErrorState As t_ErrorState
srvSaveErrorState ErrorState
‘insert custom error handling code here
Set TheMethod = Nothing
srvRestoreErrorState ErrorState
srvExtendError " Routine "

Another issue to be aware of is code falling through t&th@Trap

section. Naturally, you do not want this to occur. So, just before this section,
you might want to have axit Sub statement to ensure that the code never
gets here inadvertently.

Service Developer's Guide

‘ Raising an Error

Dealing with Errors

Raising an Error

7-6

There are two ways of raising an error—you raise it yourself explicitly, or
another entity raises an error in your code unexpectedly. The unexpected error
is usually raised by Visual Basic or a Service that is using your Service.

You should raise an error when your Service detects an error. The major steps
to raising an error are:

1. Disable the error handler
2. CallsrvRaiseError
3. Exit the subroutine

Before you raise an error, you should always disable the error handl@rhat
Error Goto Labelhas enabled at an earlier time in the program, so that you
don’t end up creating a duplicate stack trace entry for this routine in the error
description. You disable the error handler with:

On Error Goto 0

Then to raise the error, you call teevRaiseError ~ handler support routine.
The syntax for that routine is:

Public Sub srvRaiseError (RoutineNamds String, ByVal Number _
As Long, ByVal HelpContexiAs Long, SourceAs String, DescriptionAs _
Variant, OptionalHelpFile, OptionalParamg

« RoutineName-Name of routine raising the error.

« Number—Numeric code of error.

« HelpContext-Help context ID of help for the error.

» Source—Name of the OLE server object raising the error.

« Description—String containing description of the error or number
containing the ID of the description in the resource file.

« HelpFile—Name of Help file containing help for the error.

» Params—The parameters to insert into the description. For more than
one, pass them as an array.

When you raise the error, you set BmitineName to the name of the
subroutine or function that detected the problem, sudbrésecute , and fill
in the other arguments as appropriate. Remember the SERVICE_NAME
constant you set when you first began creating the Service? Here, you set the
Source argument to it:

' Error if the Event did not occur

srvRaiseError RoutineName:="OnExecute", _

Number:=999,

HelpContext:=34000 + TOTAL, _

Brooks Automation

Dealing with Errors Raising an Error

Source:=SERVICE_NAME, _

Description:="The %1 Service found an error using %2 _
resource while %3 method was invoking %4 method”

HelpFile:=myHelpFile.hlp, _

Params:=Array(m_oService.Name, m_oService.Resource.Name,_
InvokingMethod.Name, Method.Name)

Exit Sub

The parameters you pass withrams should always include your Service’s
name, the Resource name, the Method name, and any relevant Dataltems.

After raising an error, you might want to exit the subroutine.

7-7

Service Developer's Guide

‘ Triggering an Error

Dealing with Errors

Triggering an Error

Receiving an Error
from the Outside

7-8

The last way to deal with an error is to create an Error object and trigger
notification in a TOM application. Two situations where you might trigger an
Error object are:

= An error comes in to your Service from the outside. In this situation, your
Service is at the top of the call stack. In this case you must trap the error
and, in most cases, you should trigger an Error object.

« When your Service encounters an error while executing a Method and
you want to raise the error but do not want to terminate the Method.

If an error comes from outside your Service, you should trigger the error for
the application using your Service. For instance, suppose a piece of
equipment sends up an error through an ActiveX control. Because this type of
error occurs asynchronously, you cannot handleGniBExecute |,
OnSubscribedEvent , or any other handler method TOM calls. TOM isn't
active and isn't calling any handler methods, because only your Service
knows about the error. In this situation, you set up a private routine in your
Service that an ActiveX can call.

NOTE Tip—From Top of Call Stack, You Must Handle Errors

When an error occurs, and your Service is at the top of the
call stack, you must trap these errors and not allow them to
propagate upward. If an event handler raises an error and you
do not trap it, the entire TOM application may terminate!

At the top of the private routine, you should h@reError Resume Next

followed by a call to a special error handler, suchEerEvent . This way

you guarantee that the error is not propagated up the call stack because you do
not go to an error trap label. Below is an example of how you call an event
handler nametErrorEvent for theEquipCtrl control:

Private Sub EquipCtrl_Error()
On Error Resume Next
IErrorEvent
Exit Sub

Inside the error handler, you generate an Error object and trigger the Error for
the application using your Service (such as TOM Explorer). You use
srvTriggerError to take both of those actions.

Brooks Automation

Dealing with Errors Triggering an Error

The syntax of this routine is as follows:

Public SubsrvTriggerError (ServiceAs tom.Service,
ByVal ErrorCodeAs Long, _
ByVal HelpContextAs Long, _
ByVal SourceAs String, _
ByVal ErrorTextAs Variant, _
OptionalHelpFile, _
OptionalErrorObject,
OptionalParamg

You can pass parameters to the routine, just as you would with
srvRaiseError or srvExtendError (seeRaising an Erroyp. 7-6, or
Extending an Errarp. 7-3).

In the error handler, after you take any action you'd like to take in your
Service, you calbrvTriggerError

Private Sub IErrorEvent()
On Error Goto ErrorTrap
‘Deal with the error event here
Exit Sub

srvTriggerError m_oService, _
ErrorCode:=20039, _
HelpContext:=70039, _
Source:=SERVICE_NAME, _
ErrorText:=10039, _
HelpFile:="MyHelpFile.hlp”

End Sub

The TOM application’€vrrorNotification routine receives the error

notification and receives the Error object as an argument.

For more information on thErrorNotification routine, refer to the TOM

Help file.
Trigger Error If your Service encounters an error, you would usually raise that error.
Your Service Sometimes, however, raising an error can terminate a Method in progress.
Encounters, but To avoid terminating the Method, you can trigger the Error for the application
Resume Method using your Service and continue with the Method action.
Action In this case, you can also useTriggerError

7-9

Service Developer's Guide

.44 4
Creating Service to Initialize Tool 8

Introduction

Topics in This Chapter

Planning the Approach, p. 8-2

Create Constants and References in Declarations, p. 8-3
Creating Method Object in OnCreate, p. 8-3

Checking Required Services in Onlnitialize, p. 8-3
Subscribing to Events in Onlnitialize, p. 8-4

Setting Up TOM Notifications, p. 8-4

Starting the StartTool Method in OnExecute, p. 8-4
Continuing to Chain Methods in OnMethodCompleted, p. 8-5
Executing Last Method in OnSubscribedEvent, p. 8-6
Creating the Service DLL, p. 8-7

Creating Service, Tool, Dictionaries in Database, p. 8-7

Running Service in Visual Basic Debugger, p. 8-8

You want to start a Tool by taking the following actions:

« Start logging
« Open the port
« Establish communication with the Tool

This chapter presents how to write a Service that takes these actions using a
single custom Method.

NOTE The complete code for the sample container Service is
included in Appendix F.

The Service is provided und€iASTech\Sw\Dev\Samples\StartTool\init.vbp
and its Tool is undeFASTech\Sw\Dev\Samples\StartTool\Drivers\GenTool

8-1

Service Developer's Guide

‘ Planning the Approach

Creating Service to Initialize Tool

Planning the Approach

Plan to Chain
Methods

Plan to Respond
to Events

8-2

To create a new custom Service that would start a Tool, you need to identify
the Services whose Methods you'll need to clone and execute to take those
actions. In this case, the Services and corresponding Methods are commonly
used ones:

» Start logging—tOLoggingService'sStop andStart Methods.
« Open the port-ProtocolSECSService'sClose andOpen Methods.

« Establish communication with the ToolsemEstablishCommunications
Service’sConnect Method.

Why do you need botatop andStart from LOLogging Because before

you can start logging, you have to be sure logging is not already in progress,
because if it is, you receive an error. So, before you start logging, you should
stop logging. This technique circumvents the possibility of that error.

The same is true for ti&ose andOpen Methods ofProtocolSECSTo be
sure the port is not already open, you close it finst open it.

To clone and execute several Methods in sequence, you need to know which
Method is to be executed next. The sequence you want to follow is:

= Stop

= Start

= Close

= Open

= Connect

When you clone and execute the first Method, you can Setgtproperty to
the clone of the next Method to execute. You write the code for this action
later in theOnExecute andOnMethodCompleted handler methods.

When you execute thepen Method, it generates@onnect Event from the

Tool. Because you need to respond to this event, you don’t need a section in
OnMethodCompleted for whenOpen completes; instead, you need a section
in OnSubscribedEvent for theConnect Event, which occurs after you
executeOpen, but not necessarily immediately after. The Event is
asynchronous, so you must wait for the event before proceeding.

Similarly, when you execute tl@nnect Method of
GemEstablishCommunicatign®u also must subsequently wait for an Event.
Two possible Events can occur:

=« Established communications
= Changed

Brooks Automation

Creating Service to Initialize Tool Planning the Approach

TheChanged Event occurs when the setting ot themmunicating attribute
of GemEstablishCommunicatioohanges.

Create Constants and References in Declarations

So, in theDeclarations section of your Visual Basic code, you would
establish the constants for these Services as well as any of the Services they
depend on, such &emldentificatiormandProtocolTimer

Private Const SRV_PROTOCOLSECS = "ProtocolSECS"

Private Const SRV_GEMESTABCOMMS = "GemEstablishCommunications"
Private Const SRV_GEMIDENTIFICATION = "Gemldentification"

Private Const SRV_LOLOGGING = "LOLogging"

Private Const SRV_PROTTIMER = "ProtocolTimer"

In addition, you’ll need a reference to your Service:

' References
Private m_oService As tom.Service 'Service that owns this class

Later, you need a global reference to the custom Method you are creating, so
that you can refer to it inside tldmSubscribedEvent handler method. You
create this reference in tbeclarations also:

' Global reference to a custom Method
Private m_StartTool As tom.Method

Creating Method Object in OnCreate

In OnCreate , you need to create the Method object for your custom
StartTool Method.

' Here is the StartTool Method Object

Set StartTool = srvDefineMethod(m_oService, METH_START,
"StartTool Method")

Checking Required Services in Onlnitialize

In Onlnitialize , you check to be sure each required service is present:

srvRequiredService m_oService, SRV_PROTOCOLSECS
srvRequiredService m_oService, SRV_GEMESTABCOMMS
srvRequiredService m_oService, SRV_GEMIDENTIFICATION
srvRequiredService m_oService, SRV_LOLOGGING
srvRequiredService m_oService, SRV_PROTTIMER

8-3

Service Developer's Guide

‘ Planning the Approach Creating Service to Initialize Tool

Subscribing to Events in Onlnitialize

Also in Oninitialize , You subscribe to the events you plan to react to later
in OnSubscribedEvent

' Event occurs when you execute the Open Method of ProtocolSECS:
srvSubscribeEvent m_oService, SRV_PROTOCOLSECS, "Connect"

' One of two Events occur when you execute Connect Method of

' GemEstablishCommunications:

srvSubscribeEvent m_oService, SRV_GEMESTABCOMMS, "Established
communications"

srvSubscribeEvent m_oService, SRV_GEMESTABCOMMS, "Changed"

Setting Up TOM Notifications

To complete théninitialize hander method, you set whether or not TOM
or other Services require notification by ussngSetEventNotification
and passing eithesmNotifyAlways ortomNotifyNever as an argument:

srvSetEventNotification m_oService, SRV_PROTOCOLSECS, "Connect",
tomNotifyAlways

srvSetEventNotification m_oService, SRV_GEMESTABCOMMS,
"Established communications”, tomNotifyAlways

srvSetEventNotification m_oService, SRV_GEMESTABCOMMS,
"Changed", tomNotifyAlways

Starting the StartTool Method in OnExecute

In OnExecute , you start by constructing@ase statement that has code for
each Method the operator can choose from the TOM Explorer or IDE
Browser. In one case, you would create code fo6theTool Method, as
explained in the remainder of this section.

Here, you begin the Method chaining process. Since you are going to begin by
cloning and executing th&top Method, you then clone and execute the

Start Method and put it in th8top Method object'STag property:

Set MethodToExec = srvCloneMethod(m_oService, "Stop",

SRV_LOLOGGING)

Set MethodToExec.Tag = srvCloneMethod(m_oService, "Start",
SRV_LOLOGGING)

After these steps, you need to setltivekingMethod , which is

StartTool . TOM passes this Method @nMethodCompleted , so that it
knowsStartTool was the Method from the TOM Explorer or IDE Browser
that invokedStop :

Set InvokingMethod = ExecuteMethod

8-4

Brooks Automation

Creating Service to Initialize Tool Planning the Approach

Although TOM passes thHavokingMethod to OnMethodCompleted ,

since it doesn’t pass that same informatio®tSubscribedEvent , you

need to set the global Method object you create@ttotTool to the
invoking method. Late®nSubscribedEvent can use this Method object to
determine what the invoking Method is:

Set m_StartTool = InvokingMethod 'for use by OnSubscribedEvent
Finally, the last step i@nExecute is to execute th8top Method:
srvExecute MethodToExec, m_oService, InvokingMethod

This Method is the only one you start@nExecute . When theStop Method
completes, TOM jumps in ©©OnMethodCompleted , where it can then
execute the next Method.

Continuing to Chain Methods in OnMethodCompleted

In OnMethodCompleted , you can continue the Method chaining you began
in OnExecute . Again, you generate@ase statement for each Method that
can be completing:

Case "Stop"

"This is completion of the LOLogging Stop Method to ensure no
‘error on initiating logging.

Set MethodToExec = CompletedMethod.Tag
'Gets Start method from tag of Stop method

Set MethodToExec.T%g = srvCloneMethod(m_oService, "Close",
SRV_PROTOCOLSECS) 'Sets tag to the next method, Close

srvExecute MethodToExec, m_oService, InvokingMethod

Case "Start"
"This is completion of the LOLogging Start Method.

Set MethodToExec = CompletedMethod.Ta
'Gets Close method from tag of Start metho

Set MethodToExec.Tag = srvCloneMethod(m_oService, "Open"),
SRV_PROTOCOLSECS) 'Sets tag to the next method, Open

srvExecute MethodToExec, m_oService, InvokingMethod

Case "Close"

"This is completion of the ProtocolSECS Close method to ensure
no 'error when executing the Open method.

Set MethodToExec = CompletedMethod.Tag
'Gets Open method from tag of Close method

srvExecute MethodToExec, m_oService, InvokingMethod

For the case dflose , you get thedpen Method from the tag and then
execute it. You do not set the tag to the next method to excute, because the
Service needs to execute that methadriSubscribedEvent rather than in
OnMethodCompleted

8-5

Service Developer's Guide

Planning the Approach

Creating Service to Initialize Tool

For the cases @pen andConnect , you can take all action when the
associated event occurs, so you need not handle the completion of these
Methods inOnMethodCompleted , but you can have markers for them that
indicate what is going on:

Case "Open"
'After the Open Method, Service waits for Connect Event.

Case "Connect"

‘After the Connect Method, Service waits for the Established
communications or Changed Event.

Executing Last Method in OnSubscribedEvent

8-6

When theConnect Event occurs in response to opening the port, you can
take action in response to that Event that executes the final Method, the
Connect Method ofGemEstablishCommunicatians

Case "Connect"

'‘Received notification of Connect Event from ProtocolSECS
'Completing StartTool Method's Opening of Port
srvGetService%_m oService,)
SRV_GEMESTABCOMMS).Attributes.ltem("Interval”).Value = 5

Set MethodToExec = srvCloneMethod(m_oService, "Connect”,
GEMESTABCOMMS)

srvExecute MethodToExec, m_oService, m_StartTool

You need to set thimterval Attribute of theGemEstablishCommunications
Service to a number other than 0 so that the Service refreshes the values of the
other Attributes, especially tt@ommunicating Attribute. Otherwise, if that
Attribute changes, it may not evoke tbieanged Event.

Once you have executed tiennect Method, since you have subscribed to
the possible Events it can evoke, you should establish a single case in
response to either one of them occurring:

Case "Established communications”, "Changed"

'Received notification that Communication with Tool
‘established. StartTool Method has communicated with Tool

SinceConnect is the last Method to execute, after one of the events it evokes
occurs, thestartTool Method is complete and you need to execute
srvComplete on it using the global Method object you established for it,
m_StartTool

If Not m_StartTool Is Nothing Then
srvCompleted m_StartTool
Set m_StartTool = Nothing

Brooks Automation

Creating Service to Initialize Tool Planning the Approach

End If

It is a bit different to be executirgvComplete in OnSubscribedEvent

rather than iDnMethodCompleted . Remember that to execute

srvComplete here, you still have to pass it the invoking Method, but to have
that Method available, you must have created a global Method object for it,
just as this example does fatartTool

Creating the Service DLL

Create the Service’dll so that itstbf file appears in the list of Services in
TOM Builder and you can easily assign it to the Tool.

Before you can use the Service, you must create the Service, its Tool, and the
associated Dictionaries in the database, in the next section.

Creating Service, Tool, Dictionaries in Database

For this new Service, you need a new Tool. The Tool is provided under the
Drivers directory for this Service. It is call€ggenTool.tbfand its Resource is
calledGenRes.tbfThis Tool already has &tartTool ~ Method, so you do not

have to create a Tool from scratch unless you want to practice creating a Tool.

You should, however, build the database that containGéndooland use
that database when you run this sample Service.

You can create a Tool in TOM Builder, just as you created the Stepper Tool
earlier in this manual:

« Create a new Tool.
« Create a new Resource and assign it to the Tool.
« Create the Service.

« Create your own Dictionaries if you need them—Service Dictionaries and
Resource Dictionaries.

» Add DataDefs to the Dictionaries.
« Assign Dictionaries to Services.
» Assign Dictionaries to Resources.

For details, refer to the chapter Greating a Tool for Your Serviae the
TOM Builder User’s Guidélelp file.

After you create the Tool, you can run an instance of it in TOM Explorer.

8-7

Service Developer's Guide

‘ Running Service in Visual Basic Debugger Creating Service to Initialize Tool

Running Service in Visual Basic Debugger

8-8

You can run the Service in the Visual Basic debugger just as you did for the
demo.sampl&ervice earlier in this manual:

1. Create a shortcut to TOM Explorer and set it operate on the database con-
taining the generic tool for this Service.

2. Goto the Visual Basic menu bar and seRgh => Start with Full
Compile to compile the Service.

3. Notice that nothing seems to be happening. To sdmtiediate
window appear, start TOM Explorer from the shortcut you created.

4. Inthe TOM Explorer menu bar, selggte => Create Tool object
To run theinit.sampleZService, seledgenTool from the list of Tools
that appears.

5. To see communication with the Tool actually be established, you need to
have a similator or actual Tool running and set the following Attributes of
theProtocolSECSService to match those of the appropriate settings in the
simulator/Tool:

(The settings will vary depending on your simulator. The settings given
here are for an HSMS port type, which requires HSMS related attribute
settings.)

AutoOpen = False
ConnectionMode =0
IPAddresslLoca
IPAddressRemote
IPPortLocal
IPPortRemote

O ooo o o

For an HSMS port type:

HSMST3
HSMST5
HSMST6
HSMST7
HSMST8
PortType =1

O o0ooogooao

Brooks Automation

Creating Service to Initialize Tool

Running Service in Visual Basic Debugger

"'_‘1—-" TOM Explorer - GenTool [E:\aSwE xamplesh... [H[=] E3

File “iew Mamezpace Object Help

|TOM objects
TOM |Methu:uds| Eventsl Errors I Messagesl
Elﬁ GenFes ;I
emE stablizhCommunications
Geml dentific.ation
LOLagging
L——_| l.::rl:lt ac |:||E; E |:: E;
=-Fk Attributes

H AcceptDuplicateBlocks = Falze
H AutoBaud = True

Autalpen = Falze

Baud = 9600

Connected = Falze
Connectionkode = 0
CurrentBaud = 3600
CurrentConnectiontode = 0
HSMST3 = 45

HSMSTE =10

HS5MSTE =5

HSMSTY =10

H5MS5TE =5

IPAddresslocal = 127.0.0.1
IPAddrezsRemate =199.172.36.109
IPPaortLocal = 5000
IPFaortRemote = 7021
|gnareSystemButes = Falze
Interleawe = Falze

|z0pen = Falze

LinkTestTimer =0
MultipleOpen = True

Matify on SECS message tranzfer = Tr
PartType =1

Reparfafarnings = Falze
RetryLimit =10

SeczHost = True

SenalPort = COM1

T1=03

T2=058

H T3=45 =
1| | »

Service Developer's Guide

8-9

Running Service in Visual Basic Debugger Creating Service to Initialize Tool

6. Expand thesample2Service under theenRes Resource and you see the
StartTool Method undeMethods .

:‘—'—"' TOM Explorer - GenTool [E:AaSw... W=l E3

File “iew Mamezpace Object Help
|TOM cbjects
TOR |Methnds| Eventsl Errors I Messagesl

Elﬁ GenT ool

Elm Dictionaries

=% InitResDictionary
=5 SECS Standard
: %—J SECS elements
i %—J Service specific
=5 LightsOut
: %—J Service specific

EI--@- Rezources

=8 GenRes
=5 GemEstablishCommunications
== Gemldentification
= LOLagging
$FrotocolSECS
= ProtocolTirmer
= SecsloopbackDiagrostic
== zample?
El@- b ethods

- a StartT ool

7. Right click on and execute t&gartTool Method.

Look in the lower left corner of the TOM Explorer at the status bar and
you see messages indicating it is cloning and executing methods of
various Services.

8. Click theMethods tab of TOM Explorer to see ti8tartTool Method
has been executed.

:‘1—'" TOM Ezxplorer - GenT ool [E:-AaSwExampless... [B[=] B

File “iew Mamespace 0Object Help

|h-1 ethod objects completed and logged]
TOM Methods I Eventsl Errorz I Messagesl

GenTool GenFes: zamplez: StartToaol

8-10

Brooks Automation

Creating Service to Initialize Tool Running Service in Visual Basic Debugger

9. Click theEvents tab to see the TOM Events that have occurred.

:‘F" TOM Explorer - GenTool [E:\aSwE xamples:... [l=] B3

File “iew HMamezpace 0Object Help

|EventDmecmtﬁggaedandlngged]
TOM | Methods | '
------ ﬁF GenT ool GenFes: ProtocolSECS: Connect

Elj? GenT ool GenFes: GemE stablizhCommunications: Changed
E}ﬂ} Outputs

----- = Communicating = True

EIEan I Messagesl

| kethod 'Fequest’ of Service ' emldenti| 200 ohjects | Intrinzic o

10. You can also see some indication of what is happening by looking in the
Immediate window, where the debug messages print.

™

Entering OncCreate

Leaving OnCreate

Entering Onlnitialize

Leaving Onlnitialize

Entering OnExecute

StartTool Method Executing

Entering OnMethodComwpleted Stop

StartTool Executing Start Method of LOoLogging Serwvice
Entering OnMethodCompleted Start

StartTool Executing Close Method of Protocoll3ECS Serwvice
Entering OnMethodCompleted Close

StartTool Executing Open Method of Protocoll3ECS Service
Entering OnMethodComwpleted Open

Leaving OonMethodComwpleted

Leaving OonMethodComwpleted

Leaving OonMethodComwpleted

Leaving OonMethodComwpleted

Leaving OnExecute

Entering OnfSubscrikbedEvent

RBeceived notification of Connect Event from Protocol3IECS
Completing StartTool Method's Opening of Port

Leaving OonSubscrikbedEwvent

Entering OnMethodComwmpleted Conhect

Leaving OonMethodComwpleted

Entering OnfSubscrikbedEvent

Beceived notification that Communication with Tool has been estshlished
StartTool Method has communicated with Tool

Leaving OonSubscrikbedEwvent

KN — ILi]

Service Developer's Guide

Running Service in Visual Basic Debugger Creating Service to Initialize Tool

Brooks Automation

Template/Sample Service Code

Introduction

This appendix lists the code for the template Service’s class, from the

sampleclsfile.

Service Developer's Guide

‘ Complete Code for the Service

Template/Sample Service Code

Complete Code for the Service

Option Explicit

' Object Names

Private SERVICE_NAME As String

Private Const SRV_LOOPBACK = "SecsLoopbackDiagnostic"
Private Const SRV_PROTOCOLSECS = "ProtocolSECS"
'‘Boolean that indicates whether or not Full Verification is on
Private m_oFullVerfication As Boolean

'‘DataDef names

Private Const DD_DD1 = "DataDef1"

Private Const DD_CHILDA = "ChildDataDefA"

Private Const DD_CHILDB = "ChildDataDefB"

Private Const DD_DD2 = "DataDef2"

Private Const ATT_EVENT_ENABLED = "ToolEventEnable"
Private Const METH_METHOD1 = "Method 1"

Private Const METH_METHOD?2 = "Method 2"

Private Const METH_METHODS3 = "Method 3"

Private Const EVENT_CONNECT = "Connect Event"

' Attributes of Service

Private Att_ToolEventEnable As String

' Constants for sequence of verification

Private Const CaseStepl = 1

Private Const CaseStep2 =2

Private Const CaseStep3 =3

Private Const CaseEnd = 4

' References

Private m_oService As tom.Service 'Service that owns this class
Private m_oLoopback As tom.Service 'Another Service this one accesses

Private m_oProtocolSECS As tom.Service

Public Sub OnCreate(ByVal Service As tom.Service)
Dim ServiceSpecificDataDef As tom.DataDef
Dim ToolEvent As tom.Event
Dim DataltemOutput As tom.Dataltem
Dim DataltemInput As tom.Dataltem

Dim DataDefl As tom.DataDef
Dim DataDef2 As tom.DataDef
Dim ChildDataDefA As tom.DataDef
Dim ChildDataDefB As tom.DataDef

Dim Method1 As tom.Method

Brooks Automation

Template/Sample Service Code Complete Code for the Service

Dim Method2 As tom.Method
Dim Method3 As tom.Method

' Save Service reference
Set m_oService = Service
Debug.Print "Entering OnCreate"

' Retrieve your Sevice Specific area in the Dictionary
Set ServiceSpecificDataDef = srvServiceDataDef(m_oService)

' Here is an how to load child DataDefs into your Service Specific area

Set DataDefl = srvLoadDataDef(m_oService, srvServiceDataDef(m_oService),_
"DataDef1")

Set ChildDataDefA = srvLoadDataDef(m_oService, DataDefl1, "ChildDataDefA")

Set ChildDataDefB = srvLoadDataDef(m_oService, DataDef1, "ChildDataDefB")

Set DataDef2 = srvLoadDataDef(m_oService, srvServiceDataDef(m_oService),_
"DataDef2")

' Here is how to define a Method object

' This method is Method1

Set Method1 = srvDefineMethod(m_oService, METH_METHOD1, "A Sample Method")
Set DataltemInput = srvAddDataltem(m_oService, Method1.Inputs,_
ServiceSpecificDataDef.Item("DataDef1"))

" Here is a second Method object

' This method is Method2

Set Method2 = srvDefineMethod(m_oService, METH_METHOD2, "A Second Sample Method")

' Here is a third Method object
' This method is Method3
Set Method3 = srvDefineMethod(m_oService, METH_METHODS3, "A Third Sample Method")

' Here is how to define Event objects
Set ToolEvent = srvDefineEvent(m_oService, EVENT_CONNECT, "A sample event")
Set DataltemOutput = srvAddDataltem(m_oService, ToolEvent.Outputs, _
ServiceSpecificDataDef.ltem("DataDef2"))
Debug.Print "Leaving OnCreate"

End Sub

Private Sub Class_Initialize()
SERVICE_NAME = App.Title + TypeName(Me)
End Sub

Public Sub LetAttribute(ByVal AttributeName As String, NewValue As Variant)
Debug.Print "Entering LetAttribute"
Select Case AttributeName
Case ATT_EVENT_ENABLED
Att_ToolEventEnable = NewValue

Service Developer's Guide

A-3

Complete Code for the Service Template/Sample Service Code

Case Else
Debug.Print "Cannot set ", AttributeName
End Select
Debug.Print "Leaving LetAttribute"
End Sub

Public Function GetAttribute(ByVal AttributeName As String) As Variant
Debug.Print "Entering GetAttribute"
Select Case AttributeName
Case ATT_EVENT_ENABLED
GetAttribute = Att_ToolEventEnable
Case Else
Debug.Print "No such attribute exists, ", AttributeName
End Select
Debug.Print "Attribute is ", AttributeName
Debug.Print "Leaving GetAttribute"
End Function

Public Sub Onlnitialize()
Dim localAttribute As String

Debug.Print "Entering Onlnitialize"

' Perform initialization that must happen after Attributes are
' set and/or other services are started.

' Here is how to check to be sure a required service is present
' If the service is present, it is registered in the NT registry
srvRequiredService m_oService, SRV_LOOPBACK
srvRequiredService m_oService, SRV_PROTOCOLSECS

' Generate References to other services this service works with
Set m_oLoopback = srvGetService(m_oService, SRV_LOOPBACK)
Set m_oProtocolSECS = srvGetService(m_oService, SRV_PROTOCOLSECS)

' Check that no incompatible services are running
' srvincompatibleService m_oService, ANYSERVICECONSTANT

' Subscribe to events your service requires
srvSubscribeEvent m_oService, SRV_PROTOCOLSECS, "Connect"

' Set whether or not other services require notification
' Pass this handler support routine tomNotifyAlways or tomNotifyNever
srvSetEventNotification m_oService, SRV_PROTOCOLSECS, "Connect", tomNotifyAlways
'Make use of an attribute in Onlnitialize rather than in OnCreate
Debug.Print "Leaving Onlnitialize"

End Sub

Brooks Automation

Template/Sample Service Code Complete Code for the Service

Public Sub OnExecute(ByVal ExecuteMethod As tom.Method)
Dim MethodToExec As tom.Method
Dim InvokingMethod As tom.Method
Debug.Print "Entering OnExecute"
On Error GoTo ErrorTrap

Select Case ExecuteMethod.Name
Case METH_METHOD1
Debug.Print "Method 1 Executing"

Debug.Print " ChildDataDefA: " & ExecuteMethod.Inputs.ltem("DataDefl1").
Item("ChildDataDefA").Value

Debug.Print " ChildDataDefB: " & ExecuteMethod.Inputs.ltem("DataDef1")._
Item("ChildDataDefB").Value

Set MethodToExec = srvCloneMethod(m_oLoopback, "Test")

MethodToExec.Inputs.ltem("ABS").Value =_
ExecuteMethod.Inputs.ltem("DataDef1").Item("ChildDataDefA").Value

Set InvokingMethod = ExecuteMethod
srvExecute MethodToExec, m_oService, InvokingMethod

Case METH_METHOD2
Debug.Print "Method 2 Executing”
Set MethodToExec = srvCloneMethod(m_oService, METH_METHOD3)
Set InvokingMethod = ExecuteMethod
srvExecute MethodToExec, m_oService, InvokingMethod
Case METH_METHOD3
Debug.Print "Method 3 Executing”
srvCompleted ExecuteMethod
End Select
Debug.Print "Leaving OnExecute"
Exit Sub

ErrorTrap:
Dim ErrorState As t_ErrorState
srvSaveErrorState ErrorState
Set ExecuteMethod = Nothing
srvRestoreErrorState ErrorState
srvExtendError "OnExecute”

End Sub

Public Sub OnMethodCompleted(ByVal CompletedMethod As tom.Method, ByVal InvokingMethod
As tom.Method)

Debug.Print "Entering OnMethodCompleted", CompletedMethod.Name
If InvokingMethod Is Nothing Then

' Do Verification

IVerify CompletedMethod.Tag

Service Developer's Guide

A-5

Complete Code for the Service Template/Sample Service Code

Else
' Take actions that should occur after method completes
ICompleted CompletedMethod, InvokingMethod
End If
Debug.Print "Leaving OnMethodCompleted"
End Sub

Private Sub IVerify(Index As Variant)
Dim VerifyingMethod As tom.Method
Dim ExecuteMethod As tom.Method
On Error GoTo ErrorTrap

Select Case Index
Case CaseStepl
Set VerifyingMethod = srvCloneMethod(m_oService, METH_METHODL1)
VerifyingMethod.Tag = CaseStep2

Case CaseStep2
Set VerifyingMethod = srvCloneMethod(m_oService, METH_METHOD?2)
If m_oFullVerfication Then
VerifyingMethod.Tag = CaseStep3
Else
VerifyingMethod.Tag = CaseEnd
End If

Case CaseStep3
Set VerifyingMethod = srvCloneMethod(m_oService, METH_METHOD3)

VerifyingMethod.Tag = CaseEnd

Case CaseEnd
srvVerified m_oService
Exit Sub
End Select

srvExecute VerifyingMethod, m_oService, Nothing

ErrorTrap:
Dim ErrorState As t_ErrorState
srvSaveErrorState ErrorState
Set ExecuteMethod = Nothing
srvRestoreErrorState ErrorState
srvExtendError "IVerify"

End Sub

A-6

Brooks Automation

Template/Sample Service Code

Complete Code for the Service

Private Sub ICompleted(ByVal CompletedMethod As tom.Method, ByVal InvokingMethod As

tom.Method)
Dim FinishedSteps As Boolean
Dim ExecuteMethod As tom.Method

If (CompletedMethod.Error.ErrorCode <> 0) Then

srvCompleted InvokingMethod, FailedMethod:=CompletedMethod

FinishedSteps = False
Debug.Print "Method Failed: ", InvokingMethod.Name
Else
Select Case CompletedMethod.Name
Case "Test"
Debug.Print "Completing Test"
srvCompleted InvokingMethod
Case "Method 3"
Debug.Print "Completing Method 3"
srvCompleted InvokingMethod
End Select
End If
End Sub

Public Sub OnVerify(ByVal FullVerification As Boolean)
Debug.Print "Entering OnVerify"
m_oFullVerfication = FullVerification
IVerify CaseStepl
Debug.Print "Leaving OnVerify"
End Sub

Public Function Version() As String
Debug.Print "Entering Version"
Version = srvVersion
Debug.Print "Leaving Version"

End Function

Public Sub OnTerminate()
Debug.Print "Entering OnTerminate"
Set m_oService = Nothing
Set m_oLoopback = Nothing
Set m_oProtocolSECS = Nothing
Debug.Print "Leaving OnTerminate"
End Sub
Public Sub OnSubscribedEvent(ByVal TomEvent As tom.Event)
Debug.Print "Entering OnSubscribedEvent"

On Error GoTo ErrorTrap

Service Developer's Guide

A-7

Complete Code for the Service Template/Sample Service Code

Dim NewEvent As tom.Event

If m_oService.Attributes.ltem(ATT_EVENT_ENABLED).Value = "True" Then
Set NewEvent = srvCloneEvent(m_oService, EVENT_CONNECT)
Debug.Print NewEvent.Name
If TomEvent.Name = "Connect" Then

NewEvent.Outputs.ltem("DataDef2").Value = TomEvent.Description
srvTriggerEvent NewEvent
End If

Else
Debug.Print "ToolEventEnable is False"

End If

Debug.Print "Leaving OnSubscribedEvent"

Exit Sub

ErrorTrap:
Dim ErrorState As t_ErrorState
srvSaveErrorState ErrorState
Set NewEvent = Nothing
srvRestoreErrorState ErrorState
srvExtendError "OnSubscribedEvent
End Sub

Private Sub Class_Terminate()
Me.OnTerminate
End Sub

A-8

Brooks Automation

Container Service Code B

Introduction

This appendix lists the code for the container Service, fromub@vbpfile,
which contains th&emRemoteContralontainer Service presented in
Chapter 6.

B-1

Service Developer's Guide

‘ Complete Code for Container Service Container Service Code

Complete Code for Container Service

Option Explicit

"NV10

' This equipment handles resource-active differently.

" Instead of using remote commands, the equipment uses S7S1.

' This service "contains" a standard tomss2.GemRemoteControl

' object, and delegate most of functionality to it.

' it intercepts the OnExecute method, and uses S7S1 if

' the user is trying to active a resource. Otherwise, it

' delegates to GemRemoteControl, which uses S2F41 to send remote
' commands.

' Below is the standard service that this one "contains"
Private m_oBase As New tomss2.GemRemoteControl

' Object names
Private Const SERVICE_NAME = "NV10.NV10GemRemoteControl"
Private Const METHOD_COMMAND = "Command"

' Objects referenced
Private m_oService As tom.Service ' Service owning Me
Private m_oProtocol As Object ' SECS protocol handler

Private Sub Class_Terminate()
Me.OnTerminate
End Sub

Public Sub OnTerminate()
Set m_oService = Nothing
Set m_oProtocol = Nothing
Set m_oBase = Nothing

End Sub

Public Function Version() As String
Version = srvVersion
End Function

Public Sub OnCreate(ByVal Service As tom.Service)
Dim Trans As SecsTransaction
Dim List As Secsltem

' This is where you create your "contained class”
' by executing the OnCreate handler method of that class
m_oBase.OnCreate Service

B-2

Brooks Automation

Container Service Code Complete Code for Container Service

' Save Service reference

Set m_oService = Service

' Get our protocol Handler
Set m_oProtocol = srvGetHandler(m_oService, "ProtocolSECS")

' srvLoadDataDef m_oService, Nothing, "SECS elements"

Set Trans = secsDefineTransaction(m_oService, m_oProtocol, 7, 1)
Trans.Primary.Description = "Host command send"
Set List = secsAppendList(Trans.Primary.Root)
secsAppendltem m_oService, List, "RCMD"
Set List = secsAppendList(List)
Set List = secsAppendList(List, Name:="Parameter")
secsAppendltem m_oService, List, "CPNAME"
secsAppendltem m_oService, List, "CPVAL"
Trans.Secondary.Description = "Host command acknowledge"
Set List = secsAppendList(Trans.Secondary.Root)
secsAppendltem m_oService, List, "HCACK", Value:=CByte(0)
Set List = secsAppendList(List)
Set List = secsAppendList(List, Name:="Parameter")
secsAppendltem m_oService, List, "CPNAME"
secsAppendltem m_oService, List, "CPACK"

End Sub

Public Function GetAttribute(ByVal AttributeName As String) As Variant
GetAttribute = m_oBase.GetAttribute(AttributeName)
End Function

Public Sub LetAttribute(ByVal AttributeName As String, NewValue As Variant)
m_oBase.LetAttribute AttributeName, NewValue
End Sub

Public Sub OnMethodCompleted(ByVal Method As tom.Method, ByVal InvokingMethod As
tom.Method)

m_oBase.OnMethodCompleted Method, InvokingMethod
End Sub

Public Sub OnVerify(ByVal FullVerification As Boolean)
m_oBase.OnVerify FullVerification
End Sub

Public Sub OnExecute(ByVal Method As tom.Method)
" If user is activating a resource, then switch to a local function,
' otherwise delegate to base class.
If Method.Inputs.ltem("Commands").ltem(1).Name = "PP-SELECT" Then
ExecuteS7F1 Method

Service Developer's Guide

B-3

Complete Code for Container Service Container Service Code

Else
m_oBase.OnExecute Method
End If
End Sub

Public Sub ExecuteS7F1(Method As tom.Method)
Dim Trans As SecsTransaction
Dimi As Long
Dim CPs As tom.Dataltem
Dim CP As Secsltem

Set Trans = secsNewTransaction(m_oService, m_oProtocol, 7, 1)
Set CPs = Method.Inputs.ltem(1).ltem(1)
Trans.Primary.ltem("RCMD") = CPs.DataDef.AccessID
If CPs.Count = 0 Then
Trans.Primary.ltem("Parameter").Delete
Else
Fori=2 To CPs.Count
Trans.Primary.ltem("Parameter").Duplicate
Next i
Fori=1To CPs.Count
Set CP = Trans.Primary.ltem("Parameter”, i)
CP.ltem("CPNAME").Value = CPs.Item(i).DataDef.AccessID
ISetCPVal CP.Item("CPVAL"), CPs.ltem(i)
Next i
End If

If secsSimulate(m_oProtocol) Then
Trans.Secondary.ltem("Parameter").Delete
End If

secsSend m_oService, m_oProtocol, Method, Trans
End Sub

Public Sub OnSecondaryIn(ByVal Method As tom.Method, ByVal Trans As SecsTransaction)
Dim ACK As Long

If Trans.Primary.Function = 1 Then
ACK = secsltemAsLong(secsGetltem(Trans.Secondary, "HCACK"))
" Ack code 4 is OK for S2F41
If (ACK = 0) Or (ACK =4) Then
srvCompleted Method
Else
secsCompletedWithAck Method, Trans.Secondary, secsGetltem(Trans.Secondary, "HCACK")
End If

B-4
Brooks Automation

Container Service Code Complete Code for Container Service

End If
srvCompleted Method
End Sub

Private Sub ISetCPVal(Sltem As Secsltem, Ditem As tom.Dataltem)
On Error GoTo ErrorTrap

Dimi As Long
Dim ChildSlItem As Secsltem

Sltem.Value = Dltem.Value

Sltem.Format = secsFormat(DItem.DataDef)

Fori=1 To Dltem.Count
Set ChildSltem = Sltem.AddNew(Sltem.ltemCount + 1)
ChildSitem.Name = "CPVAL"
ISetCPVal ChildSltem, Ditem.ltem(i)

Next i

Exit Sub

ErrorTrap:
srvExtendError "ISetCPVal"
End Sub

B-5

Service Developer's Guide

.
Developing Equipment Services C
Using Sample Services

Introduction

This appendix presents some basic information about the examples included
in theFASTech\SMbewSampleseplacedirectory. These samples show how

to develop Level 1, Level2, and Level 3 Services from scratch and you can
use these files as foundations for your own Services.

Level 1 Services are SECS Services, Level 2 Services are GEM Services, and
Level 3 Services are VFEI Services.

For more information about SECS, GEM, and VFEI equipment standards,
refer to theSTATIONworks Installation Guide

To test sample Services, you can use the FASTsim equipment simulation
program FASTsimexe provided with STATIONworks under
FASTech\SMpewSamplesvinsecs\FASTsinYou use this program to

simulate equipment talking to a STATIONworks Tool. For further information
on FASTsim, refer to the WinSECS Help file or WenSECS Reference
manual.

C-1

Service Developer's Guide

‘ Finding Sample Equipment Services/Tools ~ Developing Equipment Services Using Sample Services

Finding Sample Equipment Services/Tools

The locations of sample replacement Services documented in this appendix
and their corresponding Tools are indicated in the table that follows.

Sample Replacement Services Documented in Appendix

Sample Code, Manual, & Directory

Location Associated Tools & Location

Level 1 Service (SECS) smpll - new SecsLoopBack
\FASTech\S\WewSampleseplacareplssi FASTech\SMpewSampleseplacaDrivers
replssl.vbp

Level 2 Service (GEM) smpl2 - new GemClock

13 - GemAl
\FASTech\S\pe\Sampleseplacareplss2\ SMpLS = new lsemAlarm

replss2vbp FASTech\SMWewSampleseplacaDrivers
Level 3 Service (VFEI) smpl5 - new VFEIAlarm using Old GClock and
GAlarm

\FASTech\SWewSampleseplacareplss3\ smpl6 - new VFEIAlarm using new GClock & nejw
\replss3.vbp GAlarm

FASTech\SMpewSampleseplacaDrivers

Help File for Sample Services

The Help file for these equipment Services is caRaplacehlp. You can find
the Help file inFASTech\SMpewSampletbin.

Building Replacement Services Tool Database

Build the replacment Services database just as you built the sample Tool
database in Chapter 1, only this time, usettifdiles from under
FASTech\SMDe\wSampleseplacaDrivers.

Using Sample (Replacement) Equipment Services

To use the sample equipment Services, you do not need to build them. They
are already built for you and their DLLs, executables, Help files, and data files
are included in theASTech\SWewSamplein directory. You must,
however, recompile any sample Services that you further modify.

C-2

FASTech Integration

Developing Equipment Services Using Sample Services Examining Sample Level 1 Service

These Services are all referred taggdacementervices, because they
replace existing Services in a situation where the equipment is not quite
standard.

To use the Services:

1. Register the replacement sample DLL OLE servers on your machine by
runningregistetbat (in theFASTech\SMbewSampletin directory).

2. Setthe Target in the shortcut to TOM Explorer to
D:\FASTech\Sw\Bin\texplorer.exe /d replace.mdb (where D
is the drive TOM Explorer is installed on) and run TOM Explorer.

OR

Set the Target in the shortcut to the TOM DB Editor to
D:\FASTech\Sw\Bin\tomdb.exe /d replace.mdb (where D is the
drive TOM Explorer is installed on) and run the TOM DB Editor.

You can refer to the Help for the replacement Services by executing the
replacehlp file in theFASTech\S\bewSamplein directory or by right
clicking on the Service name in TOM Explorer.

Examining Sample Level 1 Service

Open thereplssivbpproject. This project produces tineplss1dil. It contains
only one Service class module nanmis@f25cls, a replacement for the
standard Level SecsLoopbackDiagnost®ervice. This Service offers the
same features as the Service it is replacing.

If you have not already compiled the Service, compile it in Visual Basic and
then open thempll - new SecsLoopBack Tool in TOM Explorer.

Examining Sample Level 2 Service

Open thereplss2vbpproject. This project produces tieplss2dil. It contains

two Service class modules namadockcls, SampleNewGemClock
replacement for the standard Levab@mClockService. This Service offers

not only the features of the Service it is replacing, but a new Attribute and
Event as well. The code for the new Attribute and Event is highlighted. When
you open the project, pay special attention to the sections marked
“---new---",

If you have not already compiled the Service, compile it in Visual Basic and
then open thempl2 - new GemClock ~ Tool in TOM Explorer. Then try
opening thesmpl3 - new GemAlarm Tool.

C-3

Service Developer's Guide

Examining Sample Level 3 Service Developing Equipment Services Using Sample Services

Examining Sample Level 3 Service

Open thereplss3vbpproject. This project produces tineplss3dil. It contains

a Service class module nam@&deialmcls,
SampleNewVFEIAlarmAManagemgateplacement for the standard Level 3
VFEIAlarmManagemerervice that enhances the original code.

For a detailed description of the enhancements, refer to the comments in the
code.

If you have not already compiled the Service, compile it in Visual Basic and
then open thempl5 - new VFEIAlarm using old GClock & old

GAlarm in TOM Explorer. Then try opening themplé - new VFEIAlarm

using new GClock & new GAlarm Tool.

Removing Samples

When you have finished using the replacement sample Services, save any you
would like to keep in a new location.

If you registered the DLLs for the replacement Services, you should also
unregister those DLLs by executibmRegistebat underFASTech\Sw

If you compiled the samples, to remove both the source and the compiled files
from your machine, execute thkeanup_allbat script located in
FASTech\Sw\Dev\Samples

C-4

FASTech Integration

Developing Help Files for Services D
Documentation Kit

Introduction

This appendix presents some basic information about the sample Help file
included in thdFASTeckSwDewSample¥ocKit directory. This sample
shows how to develop Help files for your own Services using RoboHelp.

D-1

Service Developer's Guide

‘ Writing Help Files for Your Custom Services Developing Help Files for Services Documentation Kit

Writing Help Files for Your Custom Services

D-2

When you develop custom Services you would like Brooks to distribute, you
should develop Help files to accompany them.

To develop Help files that meet Brooks’s documentation standards, you
should work with a Help-authoring product called RoboHelp, available from:

Blue Sky Software

7777 Fay Avenue Suite 201
La Jolla, CA 92037
www.blue-sky.com
800/455-5132

For some sample Help files to work with, refer to the HLP file in
FASTeckSTATIONworkdewSample¥ocKit.

Theswdockithlp file explains how to write a Help file and is itself a sample.
The components that went into building it are also included in the DocKit
directory:

swdockithpj—The Help project file

swdockitcnt—Help contents file

swdockitdoc Source file that contain the text of the Help
Robohelpdot—Main Help template file

Robortfdot—Template file to be used by subordinate files in the sample
Help project that are developed on different machines.

For further information, execute tsevdockithlp file and read it.

Brooks Automation

.44 4
Using Testing Services E

Introduction

Topics in This Chapter

FTIAttributeForms, p. E-2
FTISizelnfo, p. E-8

This appendix does not present all testing Service samples available
with the product. For information on additional Services, refer to the
samples.htrfile available in th&ASTech\Sw\Dev\Sampldisectory of
STATIONworks.

The Services in this appendix are to facilitate the following actions in a
Service or Tool driver development environment:

» Setting TOM attributesHTIAttributeFormsg
« Gathering sizing informatiorFT'1Sizelnfg

You use these Services while developing or testing Services or drivers,
where you may need to alter connections or change attribute settings
frequently.

To make use of the Services you must:

» Add the relatedtbf files under
FASTech\Sw\Dev\Samples\Misc\TB& sheServicesubdirectory
in your database before building the TOM database.

» Register thé-Tldev5.dllandFrmServ.exdiles. You register these
files by going to th&ASTech\Sw\Dev\Samples\Misc\Servers
directory, finding theegister.batfile, and executing the file.

E-1

TOM Service Developer's Guide

‘ FTIAttributeForms

Using Testing Services

FTIAttributeForms

Generic Form

E-2

TheFTIAttributeFormsservice provides three forms for viewing and/or
setting Service Attributes. One fBrotocolSECSanother for
ProtocolMBX and a third generic form for all other Services.

An example of the generic form provided for all Services other than
ProtocolSEC&ndProtocolMBXis shown below.

ProtocolFwal L Attributes [FASTech MES Resources. FASTech MES Services) x| |

Fage 1 |

Connected [vbEoolean)
ITrue

kB name [+bString)
{for_rnbee_22

Server name [vbSting)
|PCMBisry.

Server node name [vbSting]

| biriri

Description: St 'Server node name' property for all ProtcolFw® services in |
cument resource |

Hefre&h; I k. Cancel Apply | Helm |

TheFTIAttributeFormsService dynamically generates this form for
each Service whose attributes you want to set. If the Service has more
Attributes than can be displayed in a single pagega2 tab appears
next to therage 1 tab. Naturally, each Service has different Attributes,

Brooks Automation

Using Testing Services

FTIAttributeForms

ProtocolSECS
Form

ProtocolMBX
Form

but the forms all have several common elements presented under
Common Elements of All Three FormpsE-4.

For details on the ProtocolSECS form, refer to the samples.htm file
available in the samples directory.

This form has several elements in common with the atinéutes
forms presented und@ommon Elements of All Three FormsE-4.

TheAttributes form for ProtocolMBXhas two “pages,” each with a
tab you use to display them:

= Connection
= Reconnect/Simulate

Connection

Under theConnection tab, you set the Attributes required to connect
STATIONworks to FACTORYworks:

= MBX name
= Hosthname

= PCMBX server name

ProtocoltB: Attributes [MEX Tool Meszaging Besournce]

O |z Cannected

Connection | Reconnect/Simulate

Mbx name

Huaozthame |ma:-:imus

FCMB= server name |m_l,lmaill:u:m

Refresh ak. Cancel Apply Helm

Reconnect/Simulate

Under theReconnect/Simulate tab, you set these Attributes:

E-3

TOM Service Developer's Guide

FTIAttributeForms Using Testing Services

= Connect at startup —An automatic connect option. Toggle
betweernrrue andralse . True whent he check mark displays.
= Automatic reconnect —An automatic reconnect when the MBX

connection is lost. Toggle betweeme andFalse . True whent he
check mark displays.

= Automatic reconnect interval —Number of milliseconds
between reconnect attempts.

« Simulate —Simulate mode option. Toggle betwerne and
False . True whent he check mark displays.

« Simulated reply default —The reply to send to the mailbox
when in Simulate mode.

FrotocoltBi Attributes [ME Tool Meszaging Resource]

O |z Connected

Connecton Flec:n:-nnec:thimulatel

[T Connect at startup

[T Autornatic reconnect ™ Slmulata

Autamatic reconnect intereal Simulated reply default

|5o0od |#/c OREPLY: Diefault simulat
Refrezh | k. Cancel | Apply Heln

This form has several elements in common with the atiréutes
forms presented und@ommon Elements of All Three FormsE-4.

Common Attributes, Values, Types
Elements of All Read-only Attributes display in a grayed text box that you cannot
Three Forms edit.

The Visual Basit/arType of each Attribute appears in parentheses
next to its name. If thearType isvbString , then by double

clicking on the text box, you expand the box to display multiple
lines that you can edit. In this Multiline Edit/View mode, you can
enter a multiline string with carriage returns and all buttons at the
bottom of the form becomes disabled exe@piCancel , andHelp .

E-4

Brooks Automation

Using Testing Services FTIAttributeForms

Clicking okin this mode sets the new value in the form, but not in
the Service.

Description

A Description block that displays the description of the Attribute
whose value field you have the cursor in. If the description exceeds
two lines, scrollbars become available.

Buttons
All three forms have the same buttons (corresponding keystrokes):

0 Refresh —Retrieves the latest Attribute settings.
o OK(or Enter)—Sets the Attributes and closes the form.

o Cancel (or ESC)—Cancels settings of Attributes and closes
form.

0 Apply —Sets the Attributes and leaves the form open.

0 Help —Launches TOM Help for the Service whose attributes
you are viewing and/or setting.

Attributes
None

E-5

TOM Service Developer's Guide

FTIAttributeForms

Using Testing Services

E-6

Methods

TheFTIAttributeFormsService dynamically creates Methods whose
names correspond to the Services of the Tool it is assigned to.

TOk |Methuds| Eventsl Errarz I Me&sagesl

E| FASTech MES Services =l
N

El% FTlAtnbuteForms
E@ Methodz

FTIFrotocolForm

FTISizelnfo
FwE quiprnenthd anitaring
Fubd aterialTracking

zziontd anagement

LOLicenze
LOLogging
FrotocolFwiLL
ProtocolFwEDC
ProtocolFwikd DL
FrotocolFwOFR
ProtocolFwPRP

ProtocolFuisF

ProtocolF wisP

=l
.t |

| kethod ‘Fuwsezziontd anagement’ of Service FTIAtButeFarms' completed for Tool 'FASTech b

To see the Methods, expand fiEAttributeFormsService’s Methods
under the Tool. Here you ou see a list of Methods, each with the name
of one of the Tool’s Services (see preceding illustration).

Brooks Automation

Using Testing Services FTIAttributeForms

To execute the Attributes form for one of the corresponding Services,
you right click on the Method and sel>cute .

El% FTlAtnbuteForms
E@ Methodz

FTIFrotocolForm

FTISizelnfo
FwE quiprnenthd anitaring

Fubd aterialTracking

- H Collapze

LI Expand
Help on Object...

You then see thettributes ~ form displaying that Service’s Attributes.

Events

None

NOTE Since the Methods are created in tmnitialize
routine, Methods are not created for cloned Services.

E-7

TOM Service Developer's Guide

FTISizelnfo

Using Testing Services

FTISizelnfo

Other Services
Required

Remarks

E-8

This Service provides information on the TOM application size
using API calls and indicates the number of messages per second being
transmitted/received.

For this Service to load, it requires two other Services be in the
database:

« ProtocolTimer
» LOLogging service

When you load=TISizelnfq it clones the.OLoggingService and
names the clonETISizelnfo_loghen turns off any other logging
options on this clone. Theg file base path Attribute of this
Service is available to set when tlwgging Attribute has been set to
True .

Each Poll interval executesteace Method containing these
Attributes:

= Application Memory Size
= Tool Message Rate
= CPU percentage

The Method traces these attributes into a file, where they are separated
by a TAB character, so you can easily import the log file values into a
spreadsheet or data analysis program.

Attributes

Application Memory Size

Long. Size of TOM Application in KB

Log file base path
String. Points to theog file base path of the clone of the
LOLoggingService this Service creates.

Logging
Boolean. Turns logging on/off for the updates

Poll Interval
Long. Interval in seconds (1-360) that &mplication Memory
Size andTool Message Rate should be updated.

Tool Message Rate
Single. messages/sec

Brooks Automation

Using Testing Services FTISizelnfo

CPU percentage
String. Defined by dividing the application's process time by system
clock ticks.

Methods
None

Events

None

E-9

TOM Service Developer's Guide

Code for Initialize Tool Service F

Introduction

This appendix lists the code for the init (initialize tool) Service’s class, from
thesampleZlsfile. This Service is the one that containsStetTool
Method illustrated in Chapter 8.

F-1

Service Developer's Guide

‘ Complete Code for the Init.sample2 Service Code for Initialize Tool Service

Complete Code for the Init.sample2 Service

' ---- FASTech Integration. Copyright 1999-2000

' Sample code is provided to customers for unsupported use only.
' Technical Support will accept notification of problems in

' sample services and applications, but FASTech will make

' no guarantee to fix the problems in current or future releases.

Option Explicit
' Object Names

Private SERVICE_NAME As String

Private Const SRV_PROTOCOLSECS = "ProtocolSECS"

Private Const SRV_GEMESTABCOMMS = "GemEstablishCommunications"
Private Const SRV_GEMIDENTIFICATION = "Gemldentification"

Private Const SRV_LOLOGGING = "LOLogging"

Private Const SRV_PROTTIMER = "ProtocolTimer"

‘DataDef names
Private Const METH_START = "StartTool"

'‘Boolean that indicates whether or not Full Verification is on
Private m_oFullVerfication As Boolean

' Constants for sequence of verification
Private Const CaseStepl = 1
Private Const CaseEnd =4

' References

Private m_oService As tom.Service 'Service that owns this class

' Global reference to a custom method
Private m_StartTool As tom.Method

Public Sub OnCreate(ByVal Service As tom.Service)

Dim ServiceSpecificDataDef As tom.DataDef
Dim StartTool As tom.Method

' Save Service reference
Set m_oService = Service

Debug.Print "Entering OnCreate"

' Here is the StartTool Method Object
Set StartTool = srvDefineMethod(m_oService, METH_START, "StartTool Method")

Debug.Print "Leaving OnCreate"
End Sub

F-2

Brooks Automation

Code for Initialize Tool Service Complete Code for the Init.sample2 Service

Private Sub Class_Initialize()
SERVICE_NAME = App.Title + TypeName(Me)
End Sub

Public Sub LetAttribute(ByVal AttributeName As String, NewValue As Variant)
Debug.Print "Entering LetAttribute"
'no attributes to set
Debug.Print "Leaving LetAttribute"
End Sub

Public Function GetAttribute(ByVal AttributeName As String) As Variant
Debug.Print "Entering GetAttribute"
'no attributes to get
Debug.Print "Attribute is ", AttributeName
Debug.Print "Leaving GetAttribute"
End Function

Public Sub Onlnitialize()
Dim localAttribute As String

Debug.Print "Entering OnlInitialize"
' Perform initialization that must happen after Attributes are
' set and/or other services are started.

' Here is how to check to be sure a required service is present
"If the service is present, it is registered in the NT registry
srvRequiredService m_oService, SRV_PROTOCOLSECS
srvRequiredService m_oService, SRV_GEMESTABCOMMS
srvRequiredService m_oService, SRV_GEMIDENTIFICATION
srvRequiredService m_oService, SRV_LOLOGGING
srvRequiredService m_oService, SRV_PROTTIMER

' Subscribe to events your service requires

' This event occurs when you execute the Open Method of ProtocolSECS
srvSubscribeEvent m_oService, SRV_PROTOCOLSECS, "Connect"

' These events occur when you execute Connect Method of GemEstablishCommunications
srvSubscribeEvent m_oService, SRV_GEMESTABCOMMS, "Established communications"
srvSubscribeEvent m_oService, SRV_GEMESTABCOMMS, "Changed"

' Set whether or not other services require notification
' Pass this handler support routine tomNotifyAlways or tomNotifyNever
srvSetEventNoatification m_oService, SRV_PROTOCOLSECS, "Connect", tomNotifyAlways

srvSetEventNotification m_oService, SRV_GEMESTABCOMMS, _
"Established communications”, tomNotifyAlways

srvSetEventNotification m_oService, SRV_GEMESTABCOMMS, "Changed", tomNotifyAlways

'Make use of an attribute in Onlnitialize rather than in OnCreate

Service Developer's Guide

F-3

Complete Code for the Init.sample2 Service Code for Initialize Tool Service

Debug.Print "Leaving Onlnitialize"
End Sub

Public Sub OnExecute(ByVal ExecuteMethod As tom.Method)
Dim MethodToExec As tom.Method
Dim InvokingMethod As tom.Method

Debug.Print "Entering OnExecute”
On Error GoTo ErrorTrap
Select Case ExecuteMethod.Name

Case METH_START
Debug.Print "StartTool Method Executing”
'Set MethodToExec = srvCloneMethod(m_oLoLogging, "Stop")
Set MethodToExec = srvCloneMethod(m_oService, "Stop”, SRV_LOLOGGING)
'Set MethodToExec.Tag = srvCloneMethod(m_oLoLogging, "Start")
Set MethodToExec.Tag = srvCloneMethod(m_oService, "Start", SRV_LOLOGGING)
Set InvokingMethod = ExecuteMethod
'the method executed from the TOM Explorer or the IDE Browser
'becomes the invoking method
Set m_StartTool = InvokingMethod 'for use by OnSubscribedEvent
'Without this Method object, OnSubscribedEvent doesn't know invoking Method
srvExecute MethodToExec, m_oService, InvokingMethod

End Select
Debug.Print "Leaving OnExecute"
Exit Sub

ErrorTrap:
Dim ErrorState As t_ErrorState
srvSaveErrorState ErrorState
Set ExecuteMethod = Nothing
srvRestoreErrorState ErrorState
srvExtendError "OnExecute"
End Sub

Public Sub OnMethodCompleted(ByVal CompletedMethod As tom.Method, ByVal InvokingMethod
As tom.Method)

Debug.Print "Entering OnMethodCompleted", CompletedMethod.Name

If InvokingMethod Is Nothing Then
' Do Verification
IVerify CompletedMethod.Tag
Else
' Take actions that should occur after method completes

F-4

Brooks Automation

Code for Initialize Tool Service Complete Code for the Init.sample2 Service

ICompleted CompletedMethod, InvokingMethod
End If
Debug.Print "Leaving OnMethodCompleted"
End Sub

Private Sub IVerify(Index As Variant)
Dim VerifyingMethod As tom.Method
Dim ExecuteMethod As tom.Method

On Error GoTo ErrorTrap

Select Case Index
Case CaseStepl
Set VerifyingMethod = srvCloneMethod(m_oService, METH_START)
VerifyingMethod.Tag = CaseEnd

Case CaseEnd
srvVerified m_oService
Exit Sub
End Select

srvExecute VerifyingMethod, m_oService, Nothing

ErrorTrap:
Dim ErrorState As t_ErrorState
srvSaveErrorState ErrorState
Set ExecuteMethod = Nothing
srvRestoreErrorState ErrorState

srvExtendError "IVerify"
End Sub

Private Sub ICompleted(ByVal CompletedMethod As tom.Method, ByVal InvokingMethod As
tom.Method)

Dim FinishedSteps As Boolean

Dim ExecuteMethod As tom.Method
Dim MethodToExec As tom.Method
Dim TheCount As Integer

TheCount=0

If (CompletedMethod.Error.ErrorCode <> 0) Then
srvCompleted InvokingMethod, FailedMethod:=CompletedMethod
FinishedSteps = False
Debug.Print "Method Failed: ", InvokingMethod.Name
Else
Select Case CompletedMethod.Name

Case "Stop"

Service Developer's Guide

F-5

Complete Code for the Init.sample2 Service Code for Initialize Tool Service

"This is completion of the LOLogging Stop Method to ensure no error
‘on initiating logging.
Debug.Print "StartTool Executing Start Method of LOLogging Service"

Set MethodToExec = CompletedMethod.Tag
'Gets Start method from tag of Stop method

Set MethodToExec.Tag = srvCloneMethod(m_oService, "Close",
SRV_PROTOCOLSECS) 'Sets tag to the next method Close

srvExecute MethodToExec, m_oService, InvokingMethod

Case "Start"
"This is completion of the LOLogging Start Method.
Debug.Print "StartTool Executing Close Method of ProtocolSECS Service"

Set MethodToExec = CompletedMethod.Tag 'Gets Close method from tag of
Start method

Set MethodToExec.Tag = srvCloneMethod(m_oService, "Open",
SRV_PROTOCOLSECS) 'Sets tag to the next method Open

srvExecute MethodToExec, m_oService, InvokingMethod

Case "Close"
"This is completion of the ProtocolSECS Close method to ensure no error
‘when executing the Open method.
Debug.Print "StartTool Executing Open Method of ProtocolSECS Service"

Set MethodToExec = CompletedMethod.Tag
'Gets Open method from tag of Close method

srvExecute MethodToExec, m_oService, InvokingMethod

Case "Open"
'After the Open Method, Service waits for Connect Event.

Case "Connect"
'After the Connect Method, Service waits for the Established
‘communication or Changed Event.
End Select
End If
End Sub

Public Sub OnVerify(ByVal FullVerification As Boolean)

Debug.Print "Entering OnVerify"
m_oFullVerfication = FullVerification
IVerify CaseStepl
Debug.Print "Leaving OnVerify"
End Sub

Public Function Version() As String
Debug.Print "Entering Version"
Version = srvVersion

Brooks Automation

Code for Initialize Tool Service Complete Code for the Init.sample2 Service

Debug.Print "Leaving Version"
End Function

Public Sub OnTerminate()
Debug.Print "Entering OnTerminate"
Set m_oService = Nothing
Debug.Print "Leaving OnTerminate"
End Sub

Public Sub OnSubscribedEvent(ByVal tomEvent As tom.Event)
Debug.Print "Entering OnSubscribedEvent"
On Error GoTo ErrorTrap

Dim ReceivedEvent As tom.Event 'Event subscribed to
Dim ExecuteMethod As tom.Method

Dim MethodToExec As tom.Method

Dim TheCount As Integer

Set ReceivedEvent = tomEvent
Select Case ReceivedEvent.Name

Case "Connect"”
Debug.Print "Received notification of Connect Event from ProtocolSECS"
Debug.Print "Completing StartTool Method's Opening of Port"

srvGetService(m_oService, SRV_GEMESTABCOMMS).Attributes.ltem("Inter-
val*).Value =5

Set MethodToExec = srvCloneMethod(m_oService, "Connect", SRV_GEMESTABCOMMS)
srvExecute MethodToExec, m_oService, m_StartTool

Case "Established communications”, "Changed"

Debug.Print "Received noatification that Communication with Tool has_
been established"

Debug.Print "StartTool Method has communicated with Tool"
If Not m_StartTool Is Nothing Then

srvCompleted m_StartTool

Set m_StartTool = Nothing
End If

End Select

Debug.Print "Leaving OnSubscribedEvent”
Exit Sub

ErrorTrap:
Dim ErrorState Ast_ErrorState
srvSaveErrorState ErrorState
Set ReceivedEvent = Nothing

F-7

Service Developer's Guide

Complete Code for the Init.sample2 Service

Code for Initialize Tool Service

srvRestoreErrorState ErrorState
srvExtendError "OnSubscribedEvent"
End Sub

Private Sub Class_Terminate()
Me.OnTerminate
End Sub

F-8

Brooks Automation

Index

A

actions on startup
initiating
handler methods required 3-2
Attributes
creating in databasé-28
handler methods requireéi2
Service requirements-2, 6-3
setting5-3
settings for verification process35
what Service can do with-28
when available3-10, 3-16
Attributes of ProtocolSECS
setting8-8
Auto Refresh
toggling in TOM Explorel5-6

C

Classb-3
class methods
required3-4
Terminate3-41
cloning
purpose and advantages3£3
communication
establishing with Too8-2
container Services
choosing standard Service to contGi2
creating handler methods3
creating in databasg-3
dictionaries6-3
when to useés-1

D

data values
initialize using Attributes3-16
where to initialize3-6
database

adding Servicék-2
setting for TOM Exploreb-4
DataDefs
creating clones of-27
creating references to childr&s8
Service requirements-2, 6-3, 8-7
Service specific area
creating 3-7
loading 3-7
Dataltems
creating for Event8-11
creating for Method$-9
setting for MethodS$-9
debugging Services-1
description
parameters for handling errors4
Dictionaries
Service requirements-2, 6-3
Dictionary
Service specific area
creating 3-7

E

error notifications
setting up3-18
error strings
associating error witif-4
errors
extending7-3
handling in OnMethodCompleteat27
notification to TOM application
sending 3-18
raising7-6
raising vs. extending vs. triggering2
triggering 7-8
Event notifications
canceling3-18
setting up3-18
Events

Index-1

Service Developer's Guide

Index

creating3-11
Dataltems

creating 3-11
debuggings-10
defining in your Servic&-11
other Service’s

using in your Service 3-31
subscribing ta3-17

handler methods required 3-2
testing5-10
triggering for higher level Servicg-31
verifying 3-36

F

Full Verification
setting in TOM Exploreb-11
toggling on in TOM Explore-33
full verification 3-34
FullVerification 3-34
functions
GetAttribute3-15

G

GetAttribute3-15
sample cod&-15

H

handler methods
Attributes
handling 3-2
GetAttribute3-15
LetAttribute 3-14
OnCreate3-5
OnExecute3-20
Onlnitialize 3-16
OnMethodCompleted-4, 3-25
OnSubscribedEverd-18, 3-30
OnTerminate3-41
OnVerify 3-33
order TOM calls3-3
required3-2
startup actions
handling 3-2
subscribed Events
handling 3-2
timers

Index-2

handling 3-2
TOM'’s use 0f3-2
order of callling 3-3
Version3-40
handler support routines
see Routines

incompatible Services
checking for3-16
invoking Method3-25
defined3-22
IPAddressLocaB-8
IPAddressRemot8-8
IPPortLocal8-8
IPPortRemote3-8

L

ICompleted

sample cod&-29
LetAttribute 3-14

sample cod&-14
logging

starting8-2
Verify

sample cod&-39

M

Method notification5-10
Method objects
using in OnSubscribedEve8t6
Methods
chaining8-4, 8-5
cloning 3-22
creating3-9
Dataltems
creating 3-9
setting 3-9
debuggingb-8
defining in your Servic&-9
determining which to execute in OnExecute
3-20
executing3-22
steps to 3-22
executing in TOM Exploreb-8
existing Services

FASTech Integration

Index

using 3-23
other Service’s

executing in your Service 3-22
Properties

Notify

settings for 3-18

responding to completion &-5
verifying 3-36
where to code actio8-21

N

notification
completion3-23
notifications
error3-18
Notify Property of a Method
settings for3-18

O

objects

cleaning up3-41
OnCreate3-5

actions to take i13-6

restrictions3-12

sample cod&-12
OnExecute3-20

determining Method to execu820

handling error3-21

sample cod&-24

starting StartTool Method iB8-4

trapping errors ir8-20
Onlnitialize 3-16

restrictions3-19

sample cod&-19
OnMethodCompleted-4, 3-25, 8-5

handling errors3-27

major branches i8-25, 3-26

sample cod&-29

seeing in actiorb-9

verification proces8-26, 3-38
OnSubscribedEverg-30

sample cod&-32

when requireB-18
OnsubscribedEver8-6
OnTerminate3-41

debuggingb-14

testing5-14
OnVerify 3-33

P

partial verification3-34
port

opening8-2
Properties

Notify

settings for 3-18

Verfication CompleteB-36

Verified 3-36

verify status3-36
ProtocolSECS Attributes

setting8-8
Provider5-3

R

required Services
checking for3-17

routine
srvServiceDataDeB-7

routines
srvAddDatalteni3-9, 3-36
srvCloneDataDe#f}-27
srvCloneEveni/’-4
srvCloneMethod3-22, 3-36, 7-4
srvCompleted-21, 3-23, 3-25, 3-27
srvDefineEven3-11
srvDefineMethod3-9
srvExecute3-22, 3-25, 3-36
srvExtendErroi3-17, 7-3
srvGetService3-17
srvincompatibleServic8-16
srvLoadDataDef3-8
srvRaiseErroi7-6
srvRequiredServic8-17
srvRestoreErrorStaté-5
srvSaveErrorStaté-4
srvServiceDictionaryRoot-26
srvSetEventNotificatior8-18
srvTriggerError7-8
srvTriggerEvenB3-31, 3-36
srvVerified 3-35, 3-37
srvVersion3-40
SubscribeEven8-17

Service Developer's Guide

Index-3

Index

S

Service

adding to databade-2
Events subscribed to
handler methods for 3-2

Service reference

where to sav8-6

Service specific area

creating3-7
loading DataDefs fron3-7

ServiceProvideb-3
Services

Index-4

actions on startup

handler methods for initiating 3-2
Attributes

handler methods for 3-2
compiling5-15
container

choosing standard service to contain

6-2

purpose of 6-1
debuggingb-1
Events

creating 3-11

display in TOM Explorer 3-12

incompatible
checking for 3-16
levels
order TOM calls 3-3
Methods
creating 3-9
display in TOM Explorer 3-10
other

generating references to 3-17
relationship to Toold -2
required
checking for 3-17
setting Clas$-3
setting Provideb-3
start Tool8-2
subscribing to event3-17
testing5-15

timers
handler methods for 3-2

verifying 5-11
srvAddDatalteni3-9, 3-36
srvCloneDataDe#l-27
srvCloneEven’-4
srvCloneMethod3-22, 3-36, 7-4
srvCompleted-21, 3-23, 3-25, 3-27
srvDefineEven3-11
srvDefineMethod3-9
srvExecute3-22, 3-25, 3-36
srvExtendErro3-17, 7-3

parameters for descriptiof+4
srvGetServic&-17
srvincompatibleServic8-16
srvLoadDataDef3-8
srvRaiseErroi7-6

parameters for descriptiof+4
srvRequiredServic8-17
srvRestoreErrorStaté-5
srvSaveErrorStaté-4
srvServiceDataDe3-7
srvServiceDictionaryRoot-26
srvSetEventNotificatior3-18
srvSubscribeEver-17
srvTriggerError7-8

parameters for descriptiof+4
srvTriggerEven3-31, 3-36
srvVerified 3-35, 3-37
srvVersion3-40
StartTool Method

starting8-4

T

Terminate class methdtt41
timers

handler methods require#2
TOM 5-10
TOM Corel-10
TOM defined1-10
TOM Explorer

Auto Refresh

toggling 5-6
debugging withb-1

FASTech Integration

Index

exiting 5-14 verification
Method notification5-10 debuggingb-11
setting databasg-4 verification proces8-33, 3-34, 3-36
setting Full Verification5-11 Attribute settings3-35
Tools flow of code3-38
conceptuall-2 OnMethodComplete3-38
establishing communication wi-2 Properties to se3-36
relationship to Services-2 sample3-37
starting with Servic8-2 Version3-40
\%
values

initialize using Attributes3-16
where to initialize3-6

Index-5
Service Developer's Guide

	About This Manual
	Purpose of This Manual
	Prerequisites and Related Manuals
	Companion Manuals/Help Files

	Conventions
	Information Included in This Manual

	Getting Started with Samples 1
	Combining Tools and Services
	Establishing Database Components
	Working with Sample Services/Applications
	Building a Database of Sample Tools
	Compiling Sample Services
	Removing Samples
	Sample Services for Testing/Debugging
	Understanding Objects in TOM

	Developing Service Infrastructure 2
	Defining the Service’s Role in the Application
	Writing a Custom Service—Steps to Take
	Set Up the Service Project
	Write the Service Code
	Make the DLL
	Modify the Database

	Creating the Visual Basic Project
	Adding Custom Controls to Your Project
	Adding Required Files to Your Project
	Creating References for Your Project
	Assigning the Project Name and Title
	Creating a Class Module and Declaring Service Name�
	Understanding References, Variables, & Constants Required
	What Kinds of References Are Required?
	What Kinds of Variables Are Required?
	What Kinds of Constants Are Required?

	Creating References, Variables, and Constants
	Fitting ServicesTogether in Visual Basic Project

	Writing Your Handler Methods 3
	Writing Required Handler Methods That TOM Triggers
	When Does TOM Execute Handler Methods?
	Order of TOM Calls to Multiple OnCreates and OnInitializes
	Relationship between OnExecute and OnMethodCompleted
	Terminating Service Action
	Required Class Method

	Understanding the OnCreate Handler Method
	Writing the OnCreate Handler Method
	Pass Reference to Service to OnCreate
	Save a Reference to the Service Object
	Initialize Other Objects
	Create Service Specific Area and DataDefs in Dictionary
	Load DataDefs from Service Specific Area
	Create Child DataDefs in Service Specific Area

	Defining Method Objects for Your Service in OnCreate
	Defining Event Objects for Your Service in OnCreate
	Restrictions in OnCreate
	Code of Sample OnCreate

	Writing the LetAttribute Handler Method
	Raise an Error in LetAttribute

	Writing the GetAttribute Handler Method
	Writing the OnInitialize Handler Method
	Create OnInitialize
	Perform Any Initializations That Require Attributes
	Check That No Incompatible Services Are Running
	Verify That All Required Services Are Present
	Generate References to Other Services That Work with Yours
	Subscribe to Events Your Service Requires
	Set Whether or Not TOM App Receives Notification of Events Your Subscribed To
	Restrictions in OnInitialize
	Code of Sample OnInitialize

	Writing the OnExecute Handler Method
	Accept a TOM Method as an Argument
	Trap Any Errors
	Determine Method to Execute
	Code Method Action
	Handle Any Errors

	Executing Existing Methods in OnExecute
	Clone a Method
	Execute the Cloned Method
	Restrictions in OnExecute
	Code of Sample OnExecute

	Writing the OnMethodCompleted Handler Method
	Accept Completed Method and Invoking Method as Arguments
	Determine the Method Being Completed and Set Up Major Code Branches
	Create Branch to Complete the Method Action
	Accept Completed Method and Invoking Method as Arguments
	Determine Whether or Not Errors Have Occurred
	Use Name Property to Branch
	Determine the Method That Is Completing and Prepare to Proceed
	Code of Sample OnMethodCompleted
	Code of Sample lCompleted

	Writing the OnSubscribedEvent Handler Method
	Accept TOM Event as Argument
	Trap Any Errors That Occur
	Retrieve Any Output DataItems
	Take Other Action
	Handle Any Errors

	Triggering Your Service Event
	Clone Your Service Event
	Set Any Event DataItems
	Trigger the Event for Application
	Code of Sample OnSubscribedEvent

	Writing the OnVerify Handler Method
	Accept a Boolean as an Argument
	Prepare to Handle Any Errors
	Carry Out the Verification Process
	Send Notification to TOM
	Handle Any Errors
	Issues in OnVerify

	Verifying a Service—The Nuts and Bolts
	Execute the Methods
	Trigger the Events
	Send Notification to TOM
	Take a Closer Look at Sample Verification Process
	Code of Sample lVerify

	Writing the Version Handler Method
	Writing the OnTerminate Handler Method
	Writing a Terminate Class Method

	Creating a Tool for Your Service 4
	Working with TOM Builder
	Use TOM Builder Windows

	Creating a New Tool
	Creating a New Resource
	Logical Resources

	Adding Resources to the Tool
	Adding Your Custom Service to Database
	Setting Properties of Your Service
	Assigning Services to Tool Resources
	Creating a New Service Dictionary
	Add Description of Dictionary

	Assigning the Dictionary to a Service
	Creating a New Resource Dictionary
	Assigning the Dictionary to Resources
	Creating DataDefs
	What Can Your Service Do with TOM DataDefs?
	Create DataDefs in Your Service
	Create DataDefs in the Dictionary
	Add Children to the Database
	Loading DataDefs in Your Service
	Load a Top-Level DataDef from Dictionary

	Cloning DataDefs
	Creating Attributes
	What Can Your Service Do with TOM Attributes?
	Create Attributes in Your Service
	Add Attributes to the Database

	Finalizing Tool by Releasing It
	Building TOM Database (Containing New Tool)

	Debugging/Testing Your Service 5
	Preparing to Use Your Service in TOM Explorer
	Make Service Available to TOM Explorer with TOM Builder
	Set Required Attributes in Database

	Running Your Service in Debug Mode
	Executing Methods through TOM Explorer
	Verifying the Service from TOM Explorer
	Exiting TOM Explorer
	Compiling Your Service—Final Compile
	Generate DLL

	Testing Your Service
	Using Your Service in an Application

	Reusing Existing Services in Yours: 6
	Containment
	Choosing a Related Standard Service
	Writing the Container Service
	Create Service in the Database
	Create Required Dictionaries
	Create Handler Methods for Service

	Writing Handler Methods for Low Level Services

	Dealing with Errors 7
	Deciding to Raise, Extend, or Trigger an Error
	Extending an Error
	Call srvExtendError
	Pass Your Handler Method Name as Argument
	Use Description Argument to Identify Error
	Ensure Err Object Contains Correct Information

	Raising an Error
	Triggering an Error
	Receiving an Error from the Outside
	Trigger Error Your Service Encounters, but Resume Method Action

	Creating Service to Initialize Tool 8
	Planning the Approach
	Plan to Chain Methods
	Plan to Respond to Events

	Create Constants and References in Declarations
	Creating Method Object in OnCreate
	Checking Required Services in OnInitialize
	Subscribing to Events in OnInitialize
	Setting Up TOM Notifications
	Starting the StartTool Method in OnExecute
	Continuing to Chain Methods in OnMethodCompleted
	Executing Last Method in OnSubscribedEvent
	Creating the Service DLL
	Creating Service, Tool, Dictionaries in Database
	Running Service in Visual Basic Debugger

	Template/Sample Service Code A
	Complete Code for the Service

	Container Service Code B
	Complete Code for Container Service

	Developing Equipment Services C
	Using Sample Services
	Finding Sample Equipment Services/Tools
	Building Replacement Services Tool Database
	Using Sample (Replacement) Equipment Services
	Examining Sample Level 1 Service
	Examining Sample Level 2 Service
	Examining Sample Level 3 Service
	Removing Samples

	Developing Help Files for Services D
	Documentation Kit
	Writing Help Files for Your Custom Services

	Using Testing Services E
	FTIAttributeForms
	Generic Form
	ProtocolSECS Form
	ProtocolMBX Form
	Common Elements of All Three Forms

	FTISizeInfo

	Code for Initialize Tool Service F
	Complete Code for the Init.sample2 Service

	Index

