TOM Application Developer’'s Guide

November 1999

STATIONworks Version 2.1
A FASTech MES Product

= FASTECcH

This document contains information that is the property of Brooks Automation, Inc., Chelmsford, MA 01842, and is furnished
for the sole purpose of the operation and the maintenance of FASTech products of Brooks Automation, Inc. No part of this
publication is to be used for any other purpose, and is not to be reproduced, copied, disclosed, transmitted, stored in a retrieval
system, or translated into any human or computer language, in any form, by any means, in whole or in part, without the prior
express written consent of Brooks Automation, Inc.

Published byBrooks Automation, Inc

15 Elizabeth Drive / Chelmsford, Massachusetts 01248 / USA
(978) 262-2400

FAX (978) 262-2500

http://www.brooks.com OR www.fastech.com

Copyright© 1999 by Brooks Automation, Inc. All rights reserved.

Though at Brooks Automation, Inc., we make every effort to ensure the accuracy of our documentation, Brooks assumes hditgsponsi
for any errors that may appear in this document. The information in this document is subject to change without notice.

Sample code that appears in documentation is included for illustration only and is, therefore, unsupported. This software is provided freeaofdcharge
is not warranted by Brooks in any way. FASTech Products Technical Support will accept notification of problems in samplecasplbut Brooks
will make no guarantee to fix the problem in current or future releases.

FASTech’'s CELLman, CELLtalkCELLguide, Grapheq, WINclient, TOM, STATIONSworks, and FASTspc are trademarks of Brooks Automation, Inc.
FASTech, FASTech’'s CELLworks and FACTORYworks are registered trademarks of Brooks Automation, Inc.

Acrobat Reader is a trademark of Adobe Systems Incorporated.

CodeCenter, ObjectCenter, and TestCenter are trademarks of CenterLine.

DIGITAL UNIX is a trademark of Digital Equipment Corporation.

Glance is a trademark of Hewlett-Packard

HP-UX and Glance are trademarks of Hewlett-Packard Company.

Ingres is a trademark of Ingres Corporation.

ORACLE, ORACLE 7, SQL*Net, and SQL*Plus are registered trademarks of Oracle Corporation.

OSF/Motif is a trademark of Open Software Foundation, Inc.

POLYCENTER is a trademark of Computer Associates International, Inc.

PostScript is a registered trademark of Adobe Systems, Inc.

Purify, Quantify, PureCover are trademarks of Pure Software

Seagate Crystal Reports and Seagate Crystal Info are trademarks or registered trademarks of Seagate Technology, Inc. or one of its subsidiaries
SEMI is a trademark of Semiconductor Equipment and Materials International.

Solaris is a trademark of Sun Microsystems, Inc.

SPARCompiler, UltraSPARC, and all other SPARC trademarks are registered trademarks of SPARC International, Inc.
Sun is a trademark of Sun Microsystems, Inc.

Sybase is a trademark of Sybase, Inc.

System V and SVID (System V Interface Definition) are trademarks of American Telephone and Telegraph Co.
TIB is a trademark of Teknekron Software Systems, Inc.

Tools.h++ and DB.h++ are trademarks of RogueWave Software, Inc.

UNIX is a registered trademark of X/Open Company, Ltd.

SmartShapes and Visio are registered trademarks of Visio Corporation.

Windows NT, Active X, and Visual Basic are trademarks of Microsoft Corporation.

Workstream is a trademark of Consilium, Inc.

X Window system is a trademark of the Massachusetts Institute of Technology.

XRunner is a trademark of Mercury Interactive.

All other product names referenced are believed to be the registered trademarks of their respective companies.

Table of Contents

Chapter 1 Developing Simple Application

What IS @ TOM APPHCALIONTcooiiiiiiiiie e 1-2
Writing a TOM Application in Visual BaSiCccccvveeiiiiiiiiiiiiiiiieee e 1-2
Defining the ApPlICAtioN...........oooiiii i 1-3
Adding TOM Control to Visual Basic TOOIDOX............cccovviiiiiiiiiiiniiiiiiiiieeeenn 1-5
Creating Reference to the Tool Object Modelccccoeviiiiiiiiiiiiieiieen 1-6
Putting a TOM Control in the Application............cccccoviiii 1-7
Selecting a Tool from the Database..............ccccoeiiiiiiiiii e 1-8
TYING IN @ HEIP FlE ..o 1-9
Selecting Standard SErVICES..........oooiiiii i 1-10
Declaring REFEIENCESccoiiiiiiiiiie e 1-10
Generating Code to Trigger When FOrm Loadscccceevviiiiiiiieeieeenniiiiinee, 1-12
Retrieving and Setting Service Attributescccc 1-18
Executing a Service Method............uuviiiiiiiiie e 1-19
Receiving Method Completion Notifications from TOM Core..........ccccceuee.... 1-20
Receiving Status Notifications from TOM COrecccccceeiiinniinnninnninnnnnninnnn. 1-21
Receiving Event Notifications from TOM COreccccccoviiiiiiiiiiieeeiniiineee, 1-22
Creating Code for Help BULIONeeviiiiiiiiiiiiiieeee e 1-23
Unloading the Application FOrmcccc 1-23
Compiling the Application in Visual Basic Projectcccccccooviiiviiieeeininnnns 1-24

Chapter 2 Carrying Out Tasks on Equipment

Establishing Communication with Equipment................coo oo 2-2

Setting Up ColleCtioN EVENLSciiiiiiiiieeiiiie st e e et e e e e eeaeens 2-8
Enabling and Disabling AlarmS............uuiiiiieiiiiieeeee e 2-12
Selecting and Downloading @ RECIPEuuvvviiiiiiiiiiiiiiiiieiieeeeeeeeeeeee e ee e eeeeeeees 2-14

Chapter 3 Tips and Tricks

Using Non-Modal Dialog BOXESc.uvveiiiieeiiiiiiiieeee et 3-2
Using Daisy-Chained ServiceS/Methodsccccoeeviiiiiiiiiiiiiei e 3-2
Using Variables to Maintain Context..........ccccceeieiiiiii e, 3-3
WaILING fOr EVENESoiiiiiiiie et 3-3
Stopping an APPIICALIONoiiiiiiiiiiiiieee e 3-3

Appendix A Application Code
Complete Code of Recipe Applicationcccooooviiiiiiiiiiiii e, A-2

Index

Application Developer's Guide

Developing Simple Application 1

Topics in this chapter

What Is a TOM Application?, p. 1-2

Writing a TOM Application in Visual Basic, p. 1-2
Defining the Application, p. 1-3

Adding TOM Control to Visual Basic Toolbox, p. 1-5
Creating Reference to the Tool Object Model, p. 1-6
Putting a TOM Control in the Application, p. 1-7
Selecting a Tool from the Database, p. 1-8

Tying in a Help File, p. 1-9

Selecting Standard Services, p. 1-10

Declaring References, p. 1-10

Generating Code to Trigger When Form Loads, p. 1-12
Retrieving and Setting Service Attributes, p. 1-18
Executing a Service Method, p. 1-19

Receiving Method Completion Notifications from TOM Core, p. 1-20
Receiving Status Notifications from TOM Core, p. 1-21
Receiving Event Notifications from TOM Core, p. 1-22
Creating Code for Help Button, p. 1-23

Unloading the Application Form, p. 1-23

Compiling the Application in Visual Basic Project, p. 1-24

This chapter presents fundaments of developing a simple TOM application to
replace of TOM Explorer. The code for the application is included in the
Service’s Developer’s Kit (SDK) in a project nanragirecipevbp. You can

find this project iFASTech/TOM/Samples/apps/myrecipe

NOTE You must use the Professional or Enterprise Edition of Visual
Basic Version 5.00 when developing TOM applications.

1-1

Application Developer's Guide

‘ What Is a TOM Application?

Developing Simple Application

What Is a TOM Appl

ication?

A TOM application differs from a STATIONworks application. While
STATIONworks applications run the equipment by creating an equipment
manager in state machine form, a TOM application interacts with the
equipment directly through the Tool Object Model, just the way TOM
Explorer does. The difference between the two is the scope.

STATIONworks state machines can interact with the FACTORYworks MES
and then turn around and interact with the equipment, all from the same
machine.

TOM applicaitons interact with the equipment. You can write such an
application to replace TOM Explorer as a graphical interface for an operator.

Writing a TOM Application in Visual Basic

1-2

To write an application, after you start up Visual Basic, carry out the tasks in
each of the sections that follow, outlined below:

« Define the application requirements.

« Draw any Visual Basic forms required.

« Add the TOM control (tomctrl) to the Visual Basic toolbox.
« Create a reference to the Tool Object Model.

» Put the TOM control in the main Visual Basic form.
» Declare constants.

« Declare object references.

« Retrieve/set Service Attributes.

« Execute Service Methods.

« Handle Method completion notifications.

« Handle status notifications.

« Handle Event notifications.

« Compile the application.

« Test the application.

Brooks Automation

‘ Developing Simple Application Defining the Application

Defining the Application

Let’s suppose you want to develop a simple application to:

« Initiate communication with the equipment

« Enable all alarms on the tool

« Disable a particular alarm on the tool

« Set up particular events on the tool

« Letyou select a recipe and download that recipe to the tool

You need a form where the operator can take all of these actions. You display
this form (shown below) initially when the application rur:s.

i, Equipment Setup
Communicate with Equip -~ -~~~ ——————
................. Alﬂrms W s e e s e s e e e e a s aaaa
(" Establish Communications ©© 00T i
: | co00c000sc0000000s " Erable &l dlamns 00T
- MODLM I— - Software Rev Ii -------------------
""""""""""""""""""""""" (" Dizable &larm .ﬁ.larmID|
- Events i e —
% oo oSelectaRecipe
- O SetUpBvent EventiD [ajam bek il off SRR B2
S R RS S B O HEE
.ﬁ.::::::::“EntID | " File Name | Browse |
T EventiD |
ZZZZZZZZEVEHHD | :

You also need another form to display messages while the application sets
itself up. The MsgForm should be like the one that follows:

. MzgForm M[=]

Some names for the controls on the main form are in the next illustration.

1-3

Application Developer's Guide

Defining the Application Developing Simple Application

radEstabComms

ixtSoftRev
txtMdIn— :

/r‘ setUpEvent EventlD [sambekfaioff | txtEventldl

e S e |
radSetUpEvents | :'ﬁ': SEEEEE R el (EVEtI2
EEL S EventD . ixtEventld3
e | | paEventids

btnApply— Ll i

radEnableAlarms :

\ff"“ﬂfmﬁ i
i peatarmid

|- btnBrowse

cboRecipe

I ixtFileName

1-4

Brooks Automation

‘ Developing Simple Application Adding TOM Control to Visual Basic Toolbox

Adding TOM Control to Visual Basic Toolbox

To add the TOM control (tomctrl) to the Visual basic Controls Toolbox:

1. SelecProject =>Components and click theControls tab.

2. Select thetights Out TOM Control from the list by clicking on its
check box.

Components Ed

Cantrols | Designersl Inzertable Ell:uiectsl

[IFasTech FACTOR Yworks WIP Contral :I
[CTFasTech MBX and Mailbox Contrals

[IFasTech WIinSECS Cankral

Lights Ot TOM Control

[IMarques Corkral Library J

[IMCTWwnds Cantral
[Mediaview 1.41 Contral = - =
[MicroHelp Gauge Contral

[IMicroHelp key State Contral i [a]
[Microsaft Access Calendar Conkrol 7.0

[]Micrasoft ActiveMovie Conkral

[Microsaft Ackive Plugin |

[Micrasaft Chart Cantral - I Browise. .
4] | » [selected Items Only

—Pinnacle-EPS Graph Conkral
Location: CWWINDOWS Svskem 32| GRAPHIZ OCH

k. Cancel Apply

3. If you do not see the control in the list, clickBiowse and find the
control under theystem32lirectory.

4. The TOM control appears in the Visual Basic Toolbox as a wrench.

E E§ un 3

TOM
Control
in Toolbox

Application Developer's Guide

‘ Adding TOM Control to Visual Basic Toolbox Developing Simple Application

Creating Reference to the Tool Object Model

To add a reference to the Tool Object Model as follows:

1. SelecProject =>References from the menu bar.

2. IntheReferences dialog, selecTool Object Model by clicking on
its check box

References - myrecipe_vbp E3

fwailable References: (0] 4

Yisual Basic For spplications - Zancel

Yisual Basic runtime objects and procedures —_—

Yisiual Basic objects and procedures

Micrasoft Common Dialog Conkral 5.0 (SP2) Erowse...

CLE Automation J -
+

Lights Quk TOM Contral
Microsoft D&O 3.5 Object Librar

Tool Objeck Model Priority
[] ActiveBar Control Help |

[ActiveMovie contral bype library ﬂ
[1API Declaration Loader

[]Elue Sky Saftware SmartHelp 4.0

[1Blue Sky Software WebPopupHelp

|_|IC|:|reIDR.ﬁ.W! 5.0 Tvoe Library | _IL|

L 2

— Tool Object Model

Location: e:ifastechiswiBinttom. dll

Lanquage: Standard

If you scroll further down in the list, you see other objects related to TOM,
such as TOM Standard Services and TOM Standard Level 2 SECS Services.
You do not have to select these objects; TOM already contains information
about them.

Brooks Automation

‘ Developing Simple Application Putting a TOM Control in the Application

Putting a TOM Control in the Application

Once you develop a Visual Basic form for the application, as long as you have
added the TOM control to the custom controls and have a reference to the
Tool Object Model, you can add the TOM control to your application. Even if
you do not need a GUI for your application, you should have a form where
you can place the TOM control (tomctrl), even if it is the only control in the
form. To add the TOM control, select theTOM icon (wrench) in the Visual
Basic toolbox (see the illustration to the left) and draw a rectangle for it in the
form (shown below).

iw. Equipment Setup

EEVE"tS S

r- Select a Rec
SEtUpE"-"ErIt Ewent ID I.ﬁ.larmbeltfaﬂnff L=
T e PR

If you look at the properties for the TOM control, you see it is named
tomctrll . Later, you use this name (or whatever you change it to) in your
Visual Basic code.

Propetties - kormChrll

{tomCtrl1 tornCtrl

Alphabetic | Categorized

[About)
(Cuskarm)

(Mame) [Rpleg)l
Tndesx

Left 240

Tag

Tap 2640

1-7

Application Developer's Guide

‘ Selecting a Tool from the Database Developing Simple Application

Selecting a Tool from the Database

Declare the TOM
Tool Constant

Declare the
Database
Constant

1-8

In your TOM application, you start by selecting the Tool you want to work

with. If the Tool exists in the TOM database, it already has particular Services
associated with it so you can use those standard Services. If you need to make
change in a tool (such as adding a custom Service to it), you can use TOM
Builder or TOM DB Editor (see online Help files).

NOTE To run the sample application, use the Tool under
[FASTech/TOM/Samples/apps/MyRecipe/Drivirshis
location, you find the standard database directories and they
contain thetbf files required to build the sample tool's
database. The tool is call&d' U recipe example

In theGeneral Declarations section of the code, you should declare
private constants for the following:

« The TOM Tool you are using in the application.
« The TOM database the application should use.
« The Help file and Help context number (g@ég in a Help Filep. 1-9).

« The Services, both standard and custom, that your application uses (see
Selecting Standard Servicegs 1-10.)

For this example, you use the BTU recipe example as it exists in the
alternative Tool database (see note above). To work with the Tool in your
application, you declare a private constant for it;

' This is the TOM tool used in the TOM Application
Private Const TOOL_NAME = "BTU recipe example"

You can name the constant TOOL_NAME for convenience, but should set it
to the exact name of the tool, as it appears in the database, in quotation marks.

In this case, the Tool is a custom one. In your code, you can select any Tool
already in the database or any you have added.

For the application to be able to find the database that your Tool and its
Services are stored in, you must declare a constant for the database:

Private Const DATABASE_NAME = "myrecipe.mdb"

The database always has a name of up to eight characters with an MDB
extension. Be sure to put the name of the database in quotation marks.

Once you have a Tool and database, you can later have TOM instantiate the
Tool.

Next, you tie a Help file in to your application.

Brooks Automation

‘ Developing Simple Application Tying in a Help File

Tying in a Help File

Declare Help File
Constants

%2 smplapps. hpj

In theGeneral Declarations section of the code, you need to declare
private constants for the Help file and Help context number for the
application.

If you have created a Help file for your Services or your Tool, for your
application to use it, you must declare a constant for it and for the help
context ID (there is no help file for the sample):

" Where you can find help file info about this application
Private Const APP_HELPFILE = "myrecipe.hlp"
Private Const APP_HELP_CONTEXT = 50001

The Help file name must always end in .HLP. If you do not have a Help file
yet, you can leave out these declarations and add them later.

The APP_HELP_CONTEXT value is the one associated with the contents of
the Help file. You want the contents to appear when the operator presses the
Help button. You associated the context ID with the Help file contents for you
application the same way that it is done in the sample application. Below you
can see where the 50001 context ID is associated with the contents in the HPJ
file for the Help. (The illustration shows a file open in the Help Workshop,
available through Microsoft.)

=] E3

Help File: Ismplapps.hlp

Aamplappe. rtf
Srerminder. rif

[MAP]

| reminder_clock update=50010
srerninder Contents=50001

;I Optionz. .

Files...

Windows. .

reminder_maintenance_config=50020

reminder_maintenance_notification=50030 Bitmaps. .
reminder_popup_current_time=50110 S—
reminder_popup_dizable_alarm=50150 Map...
reminder_popup_dizable_report=50130

reminder_popup_enable_alarm=507140 Alins |

Next, you select the Services you want to use in your application.

1-9

Application Developer's Guide

‘ Selecting Standard Services Developing Simple Application

Selecting Standard Services

Declare Service
Constants

To use standard Services in your TOM application, you start by determining
which Services are available to the Tool you have selected; then choose the
Services that carry out the actions you want to take. You can browse the
details of the Tool’s Services most easily in TOM Explorer.

Get to know the Services themselves. What kinds of Methods, Events, and
Properties do they have? What kinds of Inputs does each Service need? What
kinds of Outputs does it produce?

In this application, you use a series of standard TOM Services that carry out
the tasks defined earlier. You create constants for those Services in the
General Declarations section of your project:

Private Const SRV_GEMPROCESS = "GemProcessPrograms"

Private Const SRV_VFEIRESXFER = "VFEIResourceTransfer"

Private Const SRV_GEMALARMMGMT = "GemAlarmManagement"

Private Const SRV_GEMREPORTS = "GemReports"

Private Const SRV_GEMESTABCOMMS = "GemEstablishCommunications"
Private Const SRV_PROTOCOLSECS = "ProtocolSECS"

After you declare the constants for the Services, when you declare object
references (next), you declare the Service objects that correspond to these
constants.

Declaring References

Declare Tool
Object Model
Reference

1-10

For all TOM applications you must declare references to TOM objects you
intend to use. You create these references iG#reeral Declarationsection
of the code. Major objects you need references to include:

« Tool Object Model object

« Tool object (to later represent the instantiation of the tool)

« Service objects

« Any controls inside forms that the application interacts with

While the application is operating and Tools are in use, you must always keep
a reference to the Tool Object Model object. If this reference were to go out of
scope, the Tools would not be able to work with TOM and the application
would crash. So, you must declare this reference as a global reference and
must not set it tdlothing until you intend to exit the application.

This single declaration is required before you can work with any TOM Tools:

Private m_oTOM As tom.ToolObjectModel

Brooks Automation

Developing Simple Application Selecting Standard Services

Declare Tool
Reference for Tool
Instantiation

Declare
References to
Service Objects

Declare Controls
in Forms

The type of a Tool Object Model is tom.ToolObjectModel. Notice that this
object is different from the Tool itself, which you declare next.

Once you later instantiate the Tool, you need to keep that instantiation in a
Tool object, which you declare as follows:

Private m_oTool As tom.Tool
The type of this object is tom.Tool.

If this object were to go out of scope, the application would crash, so you
must declare this reference as a global reference. Do not siibihtog
until you intend to stop using the Tool.

An alternative is to reference the Tool through the Tool Object Model object;
however, declaring a reference for the instantiation makes your code easier to
read.

To refer to and use Services in the application, you should declare references
to each of them.

' References to Service objects application uses
Private m_oGemProcess As tom.Service

Private m_oVFEIResourceXfer As tom.Service
Private m_oGemAlarmMgmt As tom.Service
Private m_oGemReports As tom.Service

Private m_oGemEstablishComms As tom.Service
Private m_oProtocolSecs As tom.Service

The type for each Service is tom.Service.

Your application must include a form, even if the only control on the form is
the TOM control. However, chances are you need multiple controls in the
form. To have your application work with those controls, you must declare
references to them. The type you need to assign them is based on the type of
control.

For the sample application (this may not be required in your application), you
declare areference to a label whose message you plan to set before displaying
it:

Private m_oCurrStatusLabel As Label

1-11

Application Developer's Guide

Generating Code to Trigger When Form Loads Developing Simple Application

Generating Code to Trigger When Form Loads

Declare Local
Variables and Set
Application
Properties

Create the TOM
Core

1-12

After you have declared all the constants and references, you are ready to
write the Visual Basic functions. Let's start with fh@m_Load function.
This function runs immediately after you load the form:

1. Declare the local variables for the ToolTypes collection and the ToolType

of the particular Tool the application later uses; also, declsisgyBorm
variable for the messages that need to display during the initialization pro-
cess:

Dim ToolTypes As tom.ToolTypes
Dim ToolType As tom.ToolType
Dim MsgForm As frmMessage

In this routine, you use thsgForm you created earlier to display the
messages, so you need to refer to it using a local variable here.

To ensure that errors are handled, you should always h&we &ror
statement early in the code. You can hav@aikrror Resume Next
statement and then on the next line either deal with the error or proceed
with the current action, depending on how you want to handle errors:

On Error Resume Next

To deal with the error, you can look at the Err object to find out whether
or not an error has occurred and then proceed to an appropriate line of
code that handles the error.

To have the application use the Help file (if you declared a constant for
one), you can now set thielpFile property of thedpp object to that
constant, then set thielpContextID of the current object to the context
ID constant:

App.HelpFile = APP_HELPFILE
Me.HelpContextlD = APP_HELP_CONTEXT

Every application must create the TOM Core as follows:

1.

Clear the Err object, so that any error that occurs is the only Err associated
with that object:

Err.Clear

Create the Tool Object Model object and set the reference to that object:
Set m_oTOM = CreateObject("tom.ToolObjectModel")

Brooks Automation

Developing Simple Application Generating Code to Trigger When Form Loads

Initialize the TOM
Core and Find the
Tool in the
Collection

Prepare to
Instantiate the
Tool

3.

If an error occurs when trying to create the Tool Object Model object, call
aReportError function (see appendix) and pass it a message to display:

If Err Then
ErrorReport “while creating TOM object ” & Err.Description
Else...

If no error occurs, let the operator enter the name of a database as a
command line argument when starting the application, as shown below:

<app_name>exe c\ <mydirectory>mydbase.mdb

If the operator does not enter a database, use the database that you set the
DATABASE_NAME constant to earlier, which becomes the default. To

set the database, you set DinitionFile property of the Tool

Object Model object:

Else...
If Command <> "" Then
m_oTOM.DefinitionFile = Command
Else
m_oTOM.DefinitionFile = DATABASE_NAME
End If

After the application creates the TOM Core, it should then initialize TOM:

1.

Start, as you did when you created the core, by clearing the Err object:
Err.Clear

Call thelnitialize Method of the Tool Object Model object:
m_oTOM.Initialize tomCitrl1

To handle any error that occurs, display a message box:

If Err Then
ReportError “while initializing TOM Core “ & Err.Description

Otherwise, if no error occurs, to find the Tool in the ToolTypes collection,
first set the ToolTypes object to the ToolTypes property of the TOM object:

Else
Set ToolTypes = m_oTOM.ToolTypes

Then set the ToolType object to the particular Tool in the collection using
theltem method and passing it the constant for the Tool, TOOL_NAME:

Set ToolType = ToolTypes.ltem(TOOL_NAME)

Before you have the TOM Core instantiate the Tool, you should prepare to
show the action that is occurring while TOM instantiates the Tool. You show
the action by displaying th&tatusNotification events that the TOM

1-13

Application Developer's Guide

Generating Code to Trigger When Form Loads Developing Simple Application

Tell TOM Core
to Instantiate the
Tool

1-14

control sends to the application. You can display a status message in the
MsgForm to show the action/status notifications. Here are the steps you take:

1. SettheMsgForm to the form that displays messages:

Set MsgForm = New frmMessage

2. Use theshow andRefresh methods to display the form:

MsgForm.Show
MsgForm.Refresh

3. To be sure it displays the correct message, set the reference to the Label
object you created earlier to the forrh&belMsg property value:

Set m_oCurrStatusLabel = MsgForm.LabelMsg

To have the TOM Core instantiate the Tool:

1. Start by clearing the Err object:

Err.Clear

2. Add a new Tool instance to the Tools collection in your TOM Core. When
you instantiate the Tool, you assign it a name. You can assign it any name
you want, regardless of what name you assigned to the TOOL_NAME
constant. In this case, the nam&idJ Tool

Set m_oTool = m_oTOM.Tools.Add(ToolType, "BTU Tool")

3. If this process succeeds, you now have a Tool instance to work with. You
should, of course, check to see if an error occurred and display an
appropriate message if it did; in this case, youRgplortError

If Err Then
ReportError " while creating tool " & Err.Description
End If

4. To display the status notifications in thegForm by setting the label to
theLabelStatus value. Later, as the status notifications occur, TOM
sends them to your application by setting$ketusLabel , and this
statement ensures the application displays them.

To see how to ensure the application receives status notifications from
TOM, refer toReceiving Status Notifications from TOM CGquel-21.

5. After the status message displays, since you don’t need it any more, you
can unload the Message form:

Set m_oCurrStatusLabel = LabelStatus
Unload MsgForm

Brooks Automation

Developing Simple Application Generating Code to Trigger When Form Loads

Find Required Next, theForm_Load routine should find the required Services in the
Service Objects database.

1. When any errors occur trying to find the required Services, you should
always have aon Error statement that sends the program flow to an
error handling section in the code, because failing to find a required Ser-
vice means other problems could occur:

On Error Resume Next

2. Then, to find the Services, you set the Service object references you
created earlier each to a particular Service. Each particular Service is in
the collection of Services associated with the one Resource the tool has:

' Find the Service objects you want/extract from Services
' collection

Set m_oGemProcess = m_oTool.Resources.ltem(1)._
Services.ltem(SRV_GEMPROCESS)

ReportError "while finding the GemProcessPrograms Service"

Set m_oVFEIResourceXfer = m_oTool.Resources.ltem(1)._
Services.ltem(SRV_VFEIRESXFER)

ReportError "while finding the VFEIResourceTransfer Service"

Set m_oGemAlarmMgmt = m_oTool.Resources.ltem(1)._
Services.ltem(SRV_GEMALARMMGMT)

ReportError "while finding the GemAlarmManagement Service"

Set m_oGemReports = m_oTool.Resources.ltem(1)._
Services.ltem(SRV_GEMREPORTS)

ReportError "while finding the GemReports Service"

Set m_oGemEstablishComms = m_oTool.Resources.ltem(1)._
Services.ltem(SRV_GEMESTABCOMMS)

ReportError "while finding the GemEstablishCommunications
Service"

Set m_oProtocolSecs = m_oTool.Resources.ltem(1)._
Services.ltem(SRV_PROTOCOLSECS)

ReportError "while finding the ProtocolSECS Service"

The(1) afteritem indicates you want to retrieve the first Resource of
the Tool. In this case, since there is only one Resource in the collection,
you usgl) to refer to it. If there were more than one, you'd have to use
the correct number or the literal name in quotation marks to refer to the
particular Resource.

Each time you try to retrieve a Service from the collection, ideally you
should check for an error.

Restrictions in Your application cannot receive Events from the TOM control or any control
Form Load duringForm_Load . So, do not have your code wait for an Event in
- Form_Load .
1-15

Application Developer's Guide

Generating Code to Trigger When Form Loads

Developing Simple Application

1-16

Complete Code of Form_Load

' When the main form is loaded, the app must initialize
'the TOM Core. Then it can proceed to instantiate your tool.
Private Sub Form_Load()

Dim ToolTypes As tom.ToolTypes

Dim ToolType As tom.ToolType

Dim

Dim

MsgForm As frmMessage
fSuccessfulStartup As Boolean

On Error Resume Next

‘While startup has not successfully completed, set local var
‘to False. Later, when form has loaded, set it to True.
fSuccessfulStartup = False

" App.HelpFile = APP_HELPFILE

' Me.

HelpContextlD = APP_HELP_CONTEXT

' Create the TOM Core

Err.Clear

Set m_oTOM = CreateObject("tom.ToolObjectModel")
If Err Then

ReportError “ while creating TOM object “ & Err.Description

Else

' User can specify an alternative database
If Command <>"" Then
m_oTOM.DefinitionFile = Command
Else
m_oTOM.DefinitionFile = DATABASE_NAME
End If

' Now, Initialize the TOM Core
Err.Clear

m_oTOM.Initialize tomCtrl1

If Err Then

ReportError “ while initializing TOM Core”_
& Err.Description

Else
' Find our tool in the ToolTypes collection
Set ToolTypes = m_oTOM.ToolTypes
Set ToolType = ToolTypes.ltem(TOOL_NAME)

' Show progress status dialog while TOM instantiates
" the tool. Then catch StatusNotification events sent

Brooks Automation

Developing Simple Application Generating Code to Trigger When Form Loads

' by the TOM Control and display the events in this
' dialog.

Set MsgForm = New frmMessage
MsgForm.Show

MsgForm.Refresh

Set m_oCurrStatusLabel = MsgForm.LabelMsg

' Tell TOM Core to instantiate the tool

' Assign a unique name to this instantiation

Err.Clear

Set m_oTool = m_oTOM.Tools.Add(ToolType, "BTU Tool")
If Err Then

MsgBox "Unable to create tool: " & Err.Description,_
vbExclamation, App.Title

End If

' Now display status notifications in our main window
Set m_oCurrStatusLabel = LabelStatus
Unload MsgForm

‘Set up Service objects in separate routine
ISetupServices

‘Now that form has loaded and services are ready,
‘set local var to True.
fSuccessfulStartup = True
End If
If Not fSuccessfulStartup Then
Unload Me
End If
End Sub

Complete Code of ISetupService Subroutine Form_Load Calls

The example uses a separate routine that it calls from diim Load to
get a reference to each Service it uses:

Private Sub ISetupServices()
On Error Resume Next

' Find the Service objects you want/extract each from collection

Set m_oGemProcess = m_oTool.Resources.ltem(1)._
Services.ltem(SRV_GEMPROCESS)

ReportError "while finding the GemProcessPrograms Service"

Set m_oVFEIResourceXfer = m_oTool.Resources.ltem(1)._
Services.ltem(SRV_VFEIRESXFER)

ReportError "while finding the VFEIResourceTransfer Service"

Set m_oGemAlarmMgmt = m_oTool.Resources.ltem(1)._
Services.ltem(SRV_GEMALARMMGMT)

Application Developer's Guide

Generating Code to Trigger When Form Loads Developing Simple Application

ReportError "while finding the GemAlarmManagement Service"

Set m_oGemReports = m_oTool.Resources.ltem(1)._
Services.ltem(SRV_GEMREPORTS)

ReportError "while finding the GemReports Service"

Set m_oGemEstablishComms = m_oTool.Resources.ltem(1)._
Services.ltem(SRV_GEMESTABCOMMS)

ReportError "while finding the GemEstablishCommunications
Service"

Set m_oProtocolSecs = m_oTool.Resources.ltem(1)._
Services.ltem(SRV_PROTOCOLSECS)

ReportError "while finding the ProtocolSECS Service"

Exit Sub
End Sub

Now that the form is loaded and you have a reference to each Service you'll
be using, you are ready to work with Service Attributes.

Retrieving and Setting Service Attributes

1-18

In most applications you need to retrieve Attributes settings from the database
or change Attribute settings in memory. You may need to set an Attribute that
a Service uses. To set such Attributes:

1. Be sure you have a reference to the Service that owns the Method.

2. To setthe Attribute’s value, retrieve it from the Attributes collection of that
Service. For example, to set thaud Attribute of theProtocolSECS
Service, you would access it using the following structure:

m_oProtocolSecs.Attributes.ltem("Baud").Value = "9600"
This setting is in memory only and does not affect the database.

For details on the Attributes the sample application uses, refeatoying
Out Tasks on Equipmer. 2-1.

Brooks Automation

Developing Simple Application Executing a Service Method

Executing a Service Method

Clone Method

Execute Method

In most applications you need to be able to execute a Service Method. Once
you verify that the Service is available, you can execute Methods of the
Service.

To execute a Method of a Service, you must clone it first, then execute the
clone. It is important that you clone it rather than executing the original
Method, because another application or a Service could be trying to execute
the original Method. By cloning the Method, your applictionhas its own copy
and does not interfere with another application or Service trying to clone or
execute the original. If you have all applications and Services clone Methods,
you eliminate potential conflicts.

Let's look at an example. To execute Gunnect Method of the
GemEstablishCommunicatio®&rvice, you first clone the Method. You use
the reference to the Service and access its Methods collection
(m_oGemEstablishComms.Methods). You then use theem method of a
Methods collection tgelect theConnect Method of the Service. You can then
cloneConnect using theClone method of a Method object:

Dim clonedMeth As tom.Method

Set clonedMeth = m_oGemEstablishComms.Methods.ltem("Connect")_
.Clone

Once you have the clone, you execute the clone of the Method using the
Execute method of a Method object:

clonedMeth.Execute

ReportError "while opening the SECSProtocol Communication Port"

After you call theExecute method of a Method object, the TOM Core has a
reference to the object only as long as the routine is executing. After the
routine finishes executing, TOM Core no longer retains the reference—it goes
away.

In addition, whenever this Method or any TOM Method executes, TOM sends
control of the program to the@ethodNotification routine for the TOM
control (tomCitrl) object you embedded in the application form. In this case,
that TOM control was calle@dmctril , so the routine would be
tomctrll_MethodNotification routine.

It is in this routine that you retrieve the Outputs the Method has produced.

1-19

Application Developer's Guide

Receiving Method Completion Notifications from TOM Core Developing Simple Application

Receiving Method Completion Notifications from TOM Core

Identify
the Method
Completing

Retrieve an Output
from a Method

1-20

When a Method executes, the application needs to know when the Method
completes. But how can your application know when a Method is complete?
You set it up to receive Method completion notifications from TOM. You do
that by creating a routine calleanCtrl1_MethodNotification . The

routine receives a TOM Method as an argument;

Private Sub tomCtrl1_MethodNotification(ByVal tomMethod As
Object)

In the MethodNotification routine, you need to determine which Method
in the application is completing and carry out the final tasks for that Method.

A standard way of setting up this routine is to uSase statement and enter
the particular code required to complete each Method:

Private Sub tomCtrl1_MethodNotification(ByVal tomMethod As
Object)
Dim counter
Select Case tomMethod.Name
GemAlarmManagement Enable All method

Case "Enable all"

'‘GemAlarmManagement Disable method
Case "Disable"

'GemEstablishCommunications
Case "Connect"

End Select

If you have more than one Service’s Method with the same name to contend
with, you can determine the Service that owns the Method by using:

strService = tomMethod.Service.Name

Usually you want to use the Outputs of a Method you have executed. You
retrieve the Outputs here in thdethodNotification routine. For instance,
suppose you want to retrieve ti®LNandSOFTREMVOutputs from the
Connect Method ofGemEstablishCommunicatiangou could set
corresponding fields in a GUI to the value of each as follows:

Case "Connect"
txtMdIn.Text = tomMethod.Outputs.ltem("MDLN").Value
txtMdIn.Refresh
txtSoftRev.Text = tomMethod.Outputs.ltem("SOFTREV").Value

Brooks Automation

Developing Simple Application Receiving Method Completion Notifications@fdnCore

txtSoftRev.Refresh

For more on working with Outputs and setting Inputs of Methods, refer to
Selecting and Downloading a Recijpe 2-14.

Receiving Status Notifications from TOM Core

Check for
Notification

Display
Notification

In addition to sending Method notifications when a Method executes, TOM
Core also sends status natifications. You may want to have your application
receive those natifications and display them in your form.

To ensure your application receives status notifications as they occur, you
create a routine nameéaCtrl1_StatusNotification that takes a text
string containing a notification as an argument:

Private Sub tomCtrl1_StatusNotification(ByVal StatusText As
String)

TOM Core sends the status text string to this routine.

To determine whether or not there is a need to display a status notification,
check the value of tha_oCurrStatusLabel reference that you created
early in the application. If its value Mothing , it does not contain a status,
S0 you should exit the routine:

If m_oCurrStatusLabel Is Nothing Then Exit Sub

Otherwise, you should set the reference to the string passed to the routine and
refresh the display:

m_oCurrStatusLabel = StatusText
m_oCurrStatusLabel.Refresh

In this example, thEorm_Load routine takes care of actually displaying the
label.

Complete Code for tomCtrl1_StatusNotification

Private Sub tomCitrl1_StatusNotification(ByVal StatusText As

String)
If m_oCurrStatusLabel Is Nothing Then Exit Sub
m_oCurrStatusLabel = StatusText
m_oCurrStatusLabel.Refresh

End Sub

1-21

Application Developer's Guide

Receiving Method Completion Notifications from TOM Core Developing Simple Application

Receiving Event Notifications from TOM Core

Prepare for Event
Notifications

Identify the Event

Take Specific
Action for Each
Event

1-22

You may want to have your application receive Event notifications when a
TOM Event occurs in a Service it is using.

To have your application “catch” Events, you must have it use the
EventNotification event of the TOMctrl object.

NOTE Terminology—Collection Events vs. Events

Collection events occur on the equipment. Another type of
Event is a TOM object evertEventNotifications are
TOM object Events, usually referred to as simpients

ThetomCtrl1_EventNotification routine accepts a tomEvent as an
argument:

Private Sub tomCtrl1_EventNotification(ByVal tomEvent_

As Object)

End Sub

When the Event itomEvent matches an Event you are interested in, your
code can take specific action. Be sure to include a case for every Event you
are interested in responding to:

Select Case tomEvent.Name
Case "Alarm set"

Case "Alarm clear"

End Select

For example, if th&SemAlarmManagemestervice receives either atarm

set oran Alarm clear Event, your Service can display Output Dataltems
from the Event in a GUI by retrieving the value of one of the Event’s Output
Dataltems, then putting it in the reference to the Event notification display
area and refresh the display:

m_oCurrStatusLabel = tomEvent.Outputs.ltem("ALTX").Value &
“ Alarm set”

m_oCurrStatusLabel.Refresh

You could take similar action for any other Events that occur.

Brooks Automation

Developing Simple Application Receiving Method Completion Notifications@fdnCore

Full Code of tomCtrl1_EventNotification Routine

Private Sub tomcCitrl1_EventNotification(ByVal tomEvent As Object)
Select Case tomEvent.Name
Case "Alarm set"
If m_oCurrStatusLabel Is Nothing Then Exit Sub

m_oCurrStatusLabel = tomEvent.Outputs.
ltem("ALTX").Value & “ Alarm set”

m_oCurrStatusLabel.Refresh
Case "Alarm clear"
If m_oCurrStatusLabel Is Nothing Then Exit Sub

m_oCurrStatusLabel = tomEvent.Outputs.ltem_
("ALTX").Value & “ Alarm cleared”

m_oCurrStatusLabel.Refresh
End Select
End Sub

Creating Code for Help Button

View theButtonHelp_Click function and fill in the following code to
associate the Help file with the Help button:

Private Sub ButtonHelp_Click()

HelpByContext Me.hwnd, APP_HELPFILE, APP_HELP_CONTEXT
End Sub

Because you used constants in this situation, if the Help file or Help context
numbers change, you can set the constants for them Qaderal
Declarations and leave this piece of the code intact.

Unloading the Application Form

View theForm_Unload routine and add text like the following to it to ensure
that the application’s objects go away before you exit the application:

Private Sub Form_Unload(Cancel As Integer)
Set m_oTool = Nothing
Set m_oTOM = Nothing
Set m_oCurrStatusLabel = Nothing

End Sub

Be sure to set the Tool object reference, TOM object referencéabeld
reference tdNothing

1-23

Application Developer's Guide

Receiving Method Completion Notifications from TOM Core Developing Simple Application

Create Code for
Exit Button

To be sure that the exit button also brings the application down, you should
have the following routine to respond to that button being pressed:

Private Sub ButtonExit_Click()
Unload Me
End Sub

Compiling the Application in Visual Basic Project

1-24

Your application can be a standard .EXE server, an in-process OLE server
(DLL), or an out-of-process OLE server (EXE).

NOTE TOM Tip—Synchronous Blocking Operations and Modal
Dialog Boxes

Do not use a synchronous blocking operation inside your
Visual Basic code—such an operation stops all action in
TOM.

The most common type of file you compile your application into is a standard
.EXE file. To create a standard .EXE file, go to the menu bar and Eidect

=> Make EXE File . Visual Basic creates the .EXE file in the project
directory.

Try running the .EXE file to see it in action.

For an explanation of how the sample application carries out the equipment
tasks, proceed to the next chapter, which covers the remaining details of the
sample code.

Brooks Automation

.44 4
Carrying Out Tasks on Equipment 2

Topics in This Chapter

Establishing Communication with Equipment, p. 2-2
Setting Up Collection Events, p. 2-8

Enabling and Disabling Alarms, p. 2-12

Selecting and Downloading a Recipe, p. 2-14

This chapter presents how to carry out some common tasks within an
application using standard Services available in TOM. The techniques it
illustrates include passing data from one Method to another within a TOM
application. This chapter assumes you have read Chapter 1.

The code for the application is included in the Service’s Developer’s Kit
(SDK) in a project nameghyrecipevbp. You can find this project under
[FASTech/TOM/apps/myrecipe

NOTE You must work with the Professional or Enterprise Edition of
Visual Basic Version 4.00 when developing TOM Services
or applications.

The sample uses a graphical user interface (GUI) for convenience. Your
application may talk directly to an MES system or to other applications rather
than working with a GUI.

2-1

Application Developer's Guide

‘ Establishing Communication with Equipment

Carrying Out Tasks on Equipment

Establishing Communication with Equipment

To communicate with the tool, you always need to work with the
ProtocolSECSService ProtocolSECSs a level 1 Service that communicates
directly with the equipment.

Understand Before you can establish communication with the equipment, you need to set
Required Services Attributes of theProtocolSECSService so that it can communicate with the
equipment.

To see what the Attributes of this Service are, you can expand the Attributes
collection undeProtocolSECSn TOM Explorer

2-2

28 ProtocolSECS
Elﬂ' Attributes

AcceptDuplicateBlocks = False
AutaBaud = True
Autolpen = Falze

Baud = 3600

Connected = Falze
Connectiontode = 0
CurrentBaud = 9600
CurrentConnectionkode = 0
HSME5T3 =45
H5M5TE =10
H5ME5TE=5
HSMST7 =10
H5M5TE =5
IP&ddresslacal = 0.0.0.0
IPAddreszRemote = 265,256, 265,100
IPPartLacal = 5000

IPPartR ermate = 5000
|gnoreSystemBytes = Falze
Interleave = True

lz0peh = Falze

LinkTeztTimer =0

kultipleQpen = True

PartType =0

Reportyarningz = Falze

RetrpLimit = 100

SecsHost = True

SeralPort = COM1

T1=03

TZ2=1

T3=45

T4=10

Brooks Automation

Carrying Out Tasks on Equipment Establishing Communication with Equipment

Retrieve Level 1 Depending on the the physical setup of the Tool, you may need to change the
Service from default settings of these Attributes. First, you must have declared the Service’s
Datab constant, generated a reference to it, and retrieved the Service from the
alabase database, all in theorm_Load routine:

Private Const SRV_PROTOCOLSECS = "ProtocolSECS"

Private m_oProtocolSecs As tom.Service

Set m_oProtocolSecs = m_oTool.Resources.ltem(1)._

Services.ltem(SRV_PROTOCOLSECS)
Create Routine for To have the application establish comunication with the Tool when the
Communicating operator clicks th&stablish Communications radio button (see below)
with Equipment radEstabComms

M. Equipment Setup
Pev

you need to create a routine associated with that button:

Private Sub radEstabComms_Click()

In your facility you most likely do not need GUI, but you could have a similar

routine that the MES triggers.
Set Attributes of Now, in theradEstabComms_Click routine you can set the Attribute values
Level 1 Service by referring to the Attributes collection of the Service and usingtg¢he

Method of an Attribute object.
Some Attributes you are required to set:

1. SettheBaud Attribute as follows:
m_oProtocolSecs.Attributes.ltem("Baud").Value = "9600"

2. You must always set tiortType to the appropriate number, depending
on your Tool’s physical setup:

0—SECS1 connection using RS-232

1—HSMS connection

2—SECS1 connection to a terminal server using TCP/IP protocol
3—SECS1 connection to a terminal server using TELNET protocol

O o o o

2-3

Application Developer's Guide

Establishing Communication with Equipment Carrying Out Tasks on Equipment

Let’s set the Attribute to the default setting of O to run the example:
m_oProtocolSecs.Attributes.ltem("PortType").Value = "0"

3. If you are using an RS-232 connection to the Tool, you must set the
SerialPort Attribute to the correct comm port (here you see the default
setting):

m_oProtocolSecs.Attributes.ltem("SerialPort").Value = "COM1"

4. If the tool is connected over a LAN (using HSMS) rather than over an
RS-232 connection, you must set thaddressLocal
IPAddressRemote |, IPPortLocal , andiPPortRemote (here you see
the default settings):

m_oProtocolSecs.Attributes.ltem("IPAddressLocal").Value =_
"0.0.0.0"

m_oProtocolSecs.Attributes.ltem("IPAddressRemote”).Value =_
"255.255.255.100"

m_oProtocolSecs.Attributes.ltem("IPPortLocal").Value =_
"5000"

m_oProtocolSecs.Attributes.ltem("IPPortRemote").Value =_
"5000"

5. For a terminal server, you need to set onlyiP#eldressRemote and
IPPortRemote

You may want to set other Attributes, depending on your Tool setup, but these
are the mandatory settings.

Retrieve the Now you are ready to establish communication by using a higher level
Communication Service that calls thBrotocolSEC Service—GemEstablishCommunicatians
Service To be able to actually establish the communication, you execute the Service’s

Connect Method. When you look at this Service in TOM Explorer, notice
that it returns two Outputs after it executd®LNandSOFTREY

EI% GemE stablizhCommunications
H-f Attributes
E| Methods
Ea Connect
Elﬂr COutputs

Brooks Automation

Carrying Out Tasks on Equipment Establishing Communication with Equipment

You can retrieve the values from these Outputs and put them into the
application’s GUI, in the text boxegMdIin andtxtSoftRev shown in the
next illustration:

radEstabComms | Iniha il I [=] E3

txtMdIn

You carry out the steps of creating the private constant, creating a reference to
the Service, and retrieving the Service from the database all in the
Form_Load procedure:

Private Const SRV_GEMESTABCOMMS = "GemEstablishCommunications"
Private m_oGemEstablishComms As tom.Service

Set m_oGemEstablishComms = m_oTool.Resources.ltem(1)._
Services.ltem(SRV_GEMESTABCOMMS)

Clone and Execute Now, as part of theadEstabComms_Click() ~ routine, you can clone the

the Connect Connect Method. First, you use the reference to the Service and access its
Methods collectionrg_oGemEstablishComms.Methods). You then use the

Method ltem method of a Method objeah(oGemEstablishComms.Methods.ltem)

to select th&€onnect Method of the Service. Once you have accessed the

Method this way, you clon@onnect using theClone method of a Method

object (se€Cloning Method Objectism the TOM Help file):

Dim clonedMeth As tom.Method
Set clonedMeth = m_oGemEstablishComms.Methods.ltem_

("Connect").Clone

Once you have the clone, you execute the clone of the Method using the
Execute method of a Method object:

clonedMeth.Execute

ReportError "while opening the SECSProtocol Communication Port"
When this Method executes, TOM sends control of the program to the

MethodNotification routine for the TOM control (tomctrl) object you
embedded in the application form.

Let's proceed to see how you use KkhethodNotification routine to
retrieve the Outputs the Method has produced.

Application Developer's Guide

Establishing Communication with Equipment Carrying Out Tasks on Equipment

Finish Establish
Communications
in the
MethodNotification
Routine

See the Results

2-6

Thetomctrll_MethodNotification() routine must contain any action
that remains for any routine in the application after that routine executes a
Method. In the case of thedEstabComms_Click() routine, after the
Connect Method executes, you need to be able to saktidin and
txtSoftRev values in the GUI.

Inside the routine, you needCase statement to check for each case of the
Method name, then take the appropriate action. For instance, if the Method
just executed i€onnect and its Service i§emEstablishCommunicatigns
then you must set the values for the two Outputs displayed in the GUI:

Select Case tomMethod.Name
'GemEstablishCommunications
Case "Connect"

txtMdIn.Text = tomMethod.Outputs.ltem("MDLN").Value
txtMdIn.Refresh

txtSoftRev.Text = tomMethod.Outputs.ltem("SOFTREV").Value
txtSoftRev.Refresh

End Select

Now, when the operator establishes communication with the equipment, the
MDLN and revision of the software on the equipment disgiav:

iw. Equipment Setup

Communicate with Equip

+ Establish Communications

MOLM PR CoN Software Hew ||:|-|==

In addition, when the application receives the status notification TOM sends,
it displays the status message shown bekou:

Event 'Changed' of Service

'GemE stablishCommunications' tiggered by T ool
BTU Toal

Brooks Automation

Carrying Out Tasks on Equipment Establishing Communication with Equipment

Complete Code of radEstabComms_Click

CAUTION

This listing reflects the latest info on attribute settings
for ProtocolSECS. The data here supersedes that
shown in the sample code included with the product.

Private Sub radEstabComms_Click()

Dim clonedMeth As tom.Method
'Set attributes of the ProtocolSECS service.
'The GemEstablishCommunications service then uses runs the
'ProtocolSECS service when it communicates with the tool.
'For your tool, you may need to set additional attributes

‘of this service.
m_oProtocolSecs.Attributes.ltem("Baud").Value = "9600"

'For an HSMS connetion, set the following attributes:

m_oProtocolSecs.Attributes.ltem("IPAddressLocal")._
Value = "0.0.0.0"

m_oProtocolSecs.Attributes.ltem("IPAddressRemote")._
Value = "255.255.255.100"

m_oProtocolSecs.Attributes.ltem("IPPortLocal").Value_
="5000"

m_oProtocolSecs.Attributes.ltem("IPPortRemote").Value_
="5000"

'You would set only IPRemoteAddress and IPPortRemote attributes
‘for a terminal server

'You set the PortType to HSMS by setting it to 1.

'Since you need to be able to test this sample without a tool,
‘the PortType is being set to the default of O for an RS-232
‘connection. For RS-232, you also needs to set the SerialPort.

m_oProtocolSecs.Attributes.ltem("PortType").Value = "0"
m_oProtocolSecs.Attributes.ltem(“SerialPort”).Value = “COM1”

'Establish communication with the tool.
'Use the reference to the GemEstablishCommunications service.

Set clonedMeth = m_oGemEstablishComms.Methods.Iltem_
("Connect").Clone

clonedMeth.Execute
ReportError "while opening the SECSProtocol Serial Port"
End Sub

2-7

Application Developer's Guide

‘ Establishing Communication with Equipment Carrying Out Tasks on Equipment

Setting Up Collection Events

Respond to Click
of Apply Button

To set up events on the equipment, let's usé&dmmReportService. If you
look in TOM Explorer, you can see that this Service hasnable Method
that requires one or more collection event IDs.

EI% GemReparts

-- Attributes
B-F Methods

a Create
a Define
a Delete
a Delete al
a Dizable
a Dizable all
EI a Erable
=8 ﬂv Inputs
P e = Collection events
& Enable al
a Lirk.
a List reports
a Fequest event
a Reguest individual

First, you must have declared the Service’s constant, generated a reference to
it, and retrieved the Service from the database, all ifdhe_Load routine:

Private Const SRV_GEMPROCESS = "GemProcessPrograms”
Private m_oGemReports As tom.Service

Set m_oGemReports = m_oTool.Resources.ltem(1)._
Services.ltem(SRV_GEMREPORTS)

You can have the code retrieve the collection event IDs when the operator
presses thapply button by putting the appropriate code into the
btnApply_Click() routine.

In this routine, the local variables for the collection events and the clone of the
Method are:

Dim objDataltemCollectionEvents As Dataltem
Dim clonedMeth As tom.Method

Test to see if the operator has toggled3beUp Events radio button to
on, and as long as it is not on, exit the routine:

If radSetUpEvents.Value = 0 Then Exit Sub

Brooks Automation

Carrying Out Tasks on Equipment Establishing Communication with Equipment

Clone the Method

Retrieve
Collection Events
Data from Method

Set the Event IDs
Using GUI Entries

radSetUpEvents

btnApply

Once theset Up Events radio button has been toggled on, to work with the
Service’s collection event ID Dataltems you need to first clonErhkle
Method ofGemReports

Set clonedMeth = m_oGemReports.Methods.ltem("Enable").Clone
Now, you need to get theollection event data from theEnable
Method’s Inputs collection:

Set objDataltemCollectionEvents = _
clonedMeth.Inputs.ltem("Collection events")

Then, to clear out any collection event IDs already in the collection, use the
Clear Method of a Dataltem object:

objDataltemCollectionEvents.Clear

Now you are ready to set the event IDs to the input from the GUI.

Once the operator enters event IDs intoEtent ID text boxes of the GUI,
your code can retrieve the event IDs (see below.

Events
setUpEvent EyentiD [1arm belt fail off txtEventld1
EventiD | txtEventld2
EventiD | txtEventld3
EventiD | IxtEventld4

Apply |

Test eactevent ID text box and if the text box does not contain an empty
string, add the collection event to the Dataltem collection usingdtie
method of a Dataltem object. Theld method takes the name of a DataDef as
an argument, in this case the name from the GUI:

If txtEventld1.Text <> "" Then
objDataltemCollectionEvents.Add (txtEventld1.Text)

End If

If txtEventld2.Text <> ™" Then
objDataltemCollectionEvents.Add (txtEventld2.Text)

2-9

Application Developer's Guide

Establishing Communication with Equipment Carrying Out Tasks on Equipment

Execute Clone of
the Method

2-10

End If

NOTE If you run the sample program, you must enter CEIDs from

the collection. You must spell the name exactly, including
blank spaces. Refer to the dictionary of the sample Tool
(BTU recipe examp)dan TOM Explorer; look under
Collection Events for a complete list. Some of those
used to test the sample include those below (all calff be
oron, as shown for the first one):

Alarm belt fail off

Alarm belt fail on

Alarm conveyor speed off
Alarm package dropped off
Alarm rail position 1 off

If txtEventld3.Text <> " Then
objDataltemCollectionEvents.Add (txtEventld3.Text)

End If

If txtEventld4.Text <> " Then
objDataltemCollectionEvents.Add (txtEventld4.Text)

End If

Once you have set all the collection event IDs, you can execute the cloned
Enable Method ofGemReports

clonedMeth.Execute
ReportError "while enabling a list of events"”

When TOM sends program control to thectrll_MethodNotification
routine, no other actions are required to complete the event setup.

Later, when the message executes, you see the following message:

Method 'Enable’ of Service 'GemPeportz’ completed
for Tool 'BTU Tool

Help E =it

Brooks Automation

Carrying Out Tasks on Equipment

Establishing Communication with Equipment

Complete Code of btnApply_Click()

Private Sub btnApply_Click()
On Error Resume Next

Dim objDataltemCollectionEvents As Dataltem
Dim clonedMeth As tom.Method

If radSetUpEvents.Value = 0 Then Exit Sub

Set clonedMeth = m_oGemReports.Methods.ltem_
("Enable™).Clone

'Get the Collection event data item from Enable Method

Set objDataltemCollectionEvents = _
clonedMeth.Inputs.ltem("Collection events")

'Clear out the possible previous list of event names.
objDataltemCollectionEvents.Clear
'Set Event Ids Names in the "Collection events" collection.

If txtEventld1.Text <> " Then
objDataltemCollectionEvents.Add (txtEventld1.Text)
End If

If txtEventld2.Text <> "™ Then
objDataltemCollectionEvents.Add (txtEventld2.Text)
End If

If txtEventld3.Text <> "" Then
objDataltemCollectionEvents.Add (txtEventld3.Text)
End If

If txtEventld4.Text <> "™ Then
objDataltemCollectionEvents.Add (txtEventld4.Text)
End If

'Execute the Enable Method from the GemReports service.
clonedMeth.Execute
ReportError "while enabling a list of events”

End Sub

Application Developer's Guide

‘ Enabling and Disabling Alarms

Carrying Out Tasks on Equipment

Enabling and Disabling Alarms

Enable Alarms

radEnableAlarms Alarms

racDisableAlarms . Disableélam Alam ID ~

Complete Code of
radEnableAlarms_Click

2-12

To enable and disable alarms, you can us&#mAlarmManagement
Service. To use the Service, you should declare its constant, generate a
reference to it, and retrieve the Service, all ufdem_Load :

Private Const SRV_GEMALARMMGMT = "GemAlarmManagement"
Private m_oGemAlarmMgmt As tom.Service

Set m_oGemAlarmMgmt = m_oTool.Resources.ltem(1)._
Services.ltem(SRV_GEMALARMMGMT)

ReportError "while finding the GemAlarmManagement service"

If you look in TOM Explorer, you can see that the Service has several
Methods. The one that would disable an alarm, logically nabisable , has

a single Input of an alarm ID. The Method that you use to enable all alarms is
Enable Al and has no Inputs. Let’s start with enabling alarms.

E% Gemdlarmi anagement
FHik Methods
=@ Disable

E& Inputs

e BLID = [Mull]

g Disable al
Eﬂ---a Enable
@& Enable l
- List al
a Simulate events

To enable all alarms, you can have a routine that responds when the operator
selects th&nable Alarms radio button (see illustration). Have the routine

Enable All Alarms
|_txtAlarmid

first clone theEnable All Method, then execute (i

Private Sub radEnableAlarms_Click()
Dim clonedMeth As tom.Method

Set clonedMeth = m_oGemAlarmMgmt.Methods.Iltem_
("Enable All").Clone

clonedMeth.Execute

ReportError "while enabling GEM alarms"

Brooks Automation

Carrying Out Tasks on Equipment Enabling and Disabling Alarms

End Sub

After Enable All executes, you need not take any other action, so the
section oftomctrl1_MethodNotification() that tests for this Method
name and its Service name need not contain any additional code.

Disable Alarms To disable alarms, you can have a routine that responds when the operator
selects th®isable Alarm radio button and fills in thalarm ID . You can
associate the routine with tbésable Alarm radio button and have it
check that thélarm ID text box is not empty:

Private Sub radDisableAlarms_Click()
Dim clonedMeth As tom.Method

If txtAlarmld.Text =" Then Exit Sub

End Sub

You can then clone tHaeisable Method using th€lone method of a
Method object:

Set clonedMeth = m_oGemAlarmMgmt.Methods.ltem("Disable™).Clone

Once you have the clone of the Method, you also have clones of all of its
Inputs/Outputs. So, you can set the value of its alarm ID Input using the
txtAlarmld ~ from the GUI:

clonedMeth.Inputs.ltem("ALID").Value = txtAlarmld.Text
Once you have set the required Input, you can then execute the Method:
clonedMeth.Execute

When TOM sends control to themctrll_MethodNotification routine,
no special action needs to take place there.

Complete Code of radDisableAlarms_Click

Private Sub radDisableAlarms_Click()
Dim clonedMeth As tom.Method
If txtAlarmld.Text =" Then Exit Sub

Set clonedMeth = m_oGemAlarmMgmt.Methods.ltem_
("Disable").Clone

clonedMeth.Inputs.ltem("ALID").Value = txtAlarmld.Text

clonedMeth.Execute

ReportError "while disabling alarm” & Str(txtAlarmld)
End Sub

2-13

Application Developer's Guide

‘ Selecting and Downloading a Recipe Carrying Out Tasks on Equipment

Selecting and Downloading a Recipe

Next, you want to have code for:

« Browse button with a text box that receives a recipe file

« Combo box where the operator can pull down a list of recipes
.- -Selecta Recipe - i bnBrowse
choRecipe T s |
Messages later S T ~T
appgear here - | Statuzlabel b
SSantata e J | > txtFileName
Sl Help Exit
Use Browse To retrieve the file name through a browse button, the sample application
Button to Retrieve includes the Common Dialog control in its form (see illustration at beginning
. . that follows).
Recipe File
........ The sample application uses the
Common *: FileName method of the Common
Dialog Dialog control ¢ommdlg) to retrieve the

control [Tl file the operator selects and place it in
the GUI text box nametttFileName

the routine’s code appears below (for more detail, refer
documentation):

Private Sub btnBrowse_Click()
commdlg.DialogTitle = "Find Recipe file"
commdlg.ShowOpen

txtFileName = commdlg.FileName
End Sub

2-14

to the Visual Basic

Brooks Automation

Carrying Out Tasks on Equipment Selecting and Downloading a Recipe

List Recipes in To see what kind of recipes the program should list in the combo box, you can
Combo Box execute theist all Method ofGemProcessProgranis TOM Explorer
and then check under the Methods tab to see the resulting recipes:

k ethiods

: Cutputs
--mipe PPID = Reciped

You can see that there are four recipes. Whenitteall Method executes
from inside your code, it also produces this list of Outputs. You must, of
course, clone the Method, then execute it, in response to an operator clicking
on the combo box:

Complete Code of Private Sub cboRecipe_Click()
cboRecipe_Click Dim cloneMethLocal As tom.Method
If txtFileName.Text = “* Then Exit Sub

Set cloneMethLocal = m_oGemProcess.Methods.Iltem_
("List all*).Clone

cloneMethLocal.Execute
ReportError "while listing all recipes"
End Sub

To put the recipes resulting from thist all Method into the pulldown
menu, you retrieve the Outputs from the Methftér the Method executes,
which means you must retrieve those Outputs after TOM sends a Method
completed notification to the application. In the

tomCtrl1_MethodNotification routine, you develop a case for when the
Method isList all and the Service emProcessPrograms

Code of Private Sub tomCtrl1_MethodNotification(ByVal tomMethod As

MethodNotification for Object)

List all Method Dim counter

Select Case tomMethod.Name
'‘GemProcessPrograms
Case "List all"
If tomMethod.Service.Name = SRV_GEMPROCESS Then
For counter =1 To 4

cboRecipe.Addltem tomMethod.Outputs._
Item(counter).Value

Next counter
cboRecipe.Refresh

2-15

Application Developer's Guide

Selecting and Downloading a Recipe Carrying Out Tasks on Equipment

Call Upload_Recipe(tomMethod, cboRecipe.Text)
End If
End Select
End Sub

Using aFor/Next loop, you can retrieve the recipes from thg all

Method’s Outputs. Using theem method of a Dataltem object (remember,
Inputs and Outputs are Dataltems), you gemtdiee property and associate

it with its counter number to position it in the pulldown list. Using the
Additem method in Visual Basic, you add the recipes to the combo box list.

Upload/Download Then you can call another routine. You pass it the name of the Method last
Recipe Operator executed and the name of the recipe the operator selected in the GUI:

Selects Call Upload_Recipe(tomMethod, cboRecipe.Text)

In theUpload_Recipe routine, you work with yet another Service, called
VFEIResourceTransfeYou use itsSResource request upload Method to

send some fundamental Inputs to the Tool so that you can retrieve the Output
from this Method and use it as an Input to the next MetReshurce

transfer download . You can see the relationship between the two

Methods in the illustration from TOM Explorer shown below:

EI% YFEIResourceT ransher

F-f Altributes

=8 b ethods

a Resource delete

; a Resource querny

_ a Rezource request download reply

: a Resource request upload
E.

- ﬂr Inputs

.. Resource type = RECIPE

=

o

----- = Fezource D = [Mul]

- e Resource file = (Null
Elﬂr Cutputs

----- = Fezource body = [Mull)
I'_—'Ia Resource transfer download

Elﬂr Inputs

----- = Fezource bype = RECIPE

-mf Resource |0 = [Null

.l Resource file = [Mull

..... = Fesource body = [Mull]

2-16

Brooks Automation

Carrying Out Tasks on Equipment Selecting and Downloading a Recipe

Pass Data Passing data from one Method to another inside a TOM application is useful
from One Method when you are daisy-chaining Methods together in a sequence. Although in
to Another this example, you pass data between Methods of the same Service, you can

also use this same technique to pass data from one Service’s Method to
another Service's Method.

Let's see how you can use tResource body Output fromResource
request upload as an Input t&esource transfer download

You also pass some Inputs from the upload to the download Method, to ensure
the Methods use the same Inputs.

Let's see how that works. Begin by defining the the routine so it receives the
two arguments:

Private Sub Upload_Recipe(RecipeMethod As tom.Method, Recipe As
String)

Next, you set clonBesource request upload

Dim clonedMeth As tom.Method

Set clonedMeth = m_oVFEIResourceXfer.Methods.
Item("Resource request upload").Clone

Then you set its Inputs using them method of a Dataltem object and
setting thevalue property for each:

clonedMeth.Inputs.ltem("Resource type").Value = "Recipe"
clonedMeth.Inputs.ltem("Resource ID").Value = Recipe
clonedMeth.Inputs.ltem("Resource file").Value = txtFileName

Finally, you execute the Method using thecute method of a Method
object:

clonedMeth.Execute
ReportError "while requesting recipe upload"”

Once the Method executes, TOM sends program control to the
tomCtrl1_MethodNotification routine, where you create a case for
when the TOM Method iResource request upload and the Service is
VFEIResourceTransfeln that case, you deal with the Output from the
Method. You set théag property of the TOM Method to the value of the
Output by using theem method of a Dataltem object and retrieving that
object’svalue property:

Code of Private Sub tomCtrl1_MethodNotification(ByVal tomMethod As
MethodNotification for Object)

Resource request

upload Method 'VFEIResourceTransfer Resource Request Upload method

Case "Resource request upload"”
If tomMethod.Service = SRV_VFEIRESXFER
tomMethod.Tag = tomMethod.Outputs.ltem("Resource_

2-17

Application Developer's Guide

Selecting and Downloading a Recipe Carrying Out Tasks on Equipment

Use Inputs and
Outputs from
Another Method

2-18

body").Value
Call Download_Recipe(tomMethod, choRecipe.Text)
End Select
End Sub

Once you have set the tag, you call Dleevnload_Recipe routine and pass
it the TOM Method and the recipe name fromdheRecipe text box:

Call Download_Recipe(tomMethod, choRecipe.Text)

Remember the Method being passed in to the routine Retdwirce

request upload Method, so the next routine can retrieve the values from
both its Inputs and its Outputs. Now, let's see how you would have
Download_Recipe use those Inputs and Outputs.

NOTE TOM Tip—Copying Data from One Service to Another

To pass data from one Service to another, you should map
the Outputs of the Service Method that has the information
to the Inputs of the Service Method you want to pass the data
into.

First, you generate the routine and cloneRbsource transfer
download Method within the routine:

Private Sub Download_Recipe(RecipeMethod As tom.Method, Recipe
As String)

Dim clonedMeth As tom.Method

Set clonedMeth = m_oVFEIResourceXfer.Methods.Iltem_
("Resource transfer download").Clone

End Sub

Now, you want to copy both the Inputs and the Outputs from previously
executed Method to this one. Because you passed in the name of the
previously executed recipe RecipeMethod and you have the soon-to-be-
executed Method stored in thienedMeth variable, you can work with the
two Services and set the cloned Method'’s Input items using the Inputs from
the previously executed Method:

clonedMeth .Inputs.ltem("Resource type").Value = RecipeMethod ._
Inputs.ltem("Resource type").Value

clonedMeth.Inputs.ltem("Resource ID").Value = RecipeMethod._
Inputs.ltem("Resource ID").Value

clonedMeth.Inputs.ltem("Resource file").Value = RecipeMethod._
Inputs.ltem("Resource file").Value

You use thetem method of each Input on both sides of the assignment
operator.

Brooks Automation

Carrying Out Tasks on Equipment Selecting and Downloading a Recipe

To set the last Input to the Output from the previously executed Method, you
set it to therag from that Method, which you can still access because you
have passed that other Method’s name to this Method:

clonedMeth.Inputs.ltem("Resource body").Value =_
RecipeMethod.Tag

Finally, you can execute the cloned Method:

clonedMeth.Execute
ReportError "while downloading recipe"

When you execute this Method, you receive no Outputs from it and need not
take any action in th®mcCtrl1_MethodNotification routine.

Complete Code of Upload_Recipe

Private Sub Upload_Recipe(RecipeMethod As tom.Method, Recipe As
String)

Dim clonedMeth As tom.Method

Set clonedMeth = m_oVFEIResourceXfer.Methods.ltem_
("Resource request upload").Clone
clonedMeth.Inputs.ltem("Resource type").Value = "Recipe”
clonedMeth.Inputs.ltem("Resource ID").Value = Recipe

clonedMeth.Inputs.ltem("Resource file").Value = _
txtFileName

clonedMeth.Execute
ReportError "while requesting recipe upload"

End Sub

Complete Code of Download_Recipe

Private Sub Download_Recipe(RecipeMethod As tom.Method, Recipe
As String)
Dim clonedMeth As tom.Method
Set clonedMeth = m_oVFEIResourceXfer.Methods.Iltem_
("Resource transfer download").Clone

'Copy inputs from previously exeuted method to this one.
'Also copy outputs from previously executed method to this
'one. RecipeMethod contains the previously executed method.

clonedMeth.Inputs.ltem("Resource type").Value = _
RecipeMethod.Inputs.ltem("Resource type").Value

clonedMeth.Inputs.ltem("Resource ID").Value = _
RecipeMethod.Inputs.ltem("Resource ID").Value

clonedMeth.Inputs.ltem("Resource file").Value = _
RecipeMethod.Inputs.ltem("Resource file").Value

2-19

Application Developer's Guide

Selecting and Downloading a Recipe Carrying Out Tasks on Equipment

clonedMeth.Inputs.ltem("Resource body").Value = _
RecipeMethod.Tag

clonedMeth.Execute
ReportError "while downloading recipe"
End Sub

See the Results When an operator runs the application, you can browse the network for the
file containing the recipe:

Select a Recipe

File Mame |:\TOMtermphdey_kitvappt |~ Browse |

Now the pulldown list of recipes becomes available in the combo box:

Select a Recipe

| =
Recipel L
File Mame |Reciped i Browse |
Recipe3
LastRecipe
StatusLabel

After you select the file containing that recipe, when you select the recipe
name, the application executes the Methods. When TOM sends the status
notifications to the application, you see each related status message in the
GUI. Due to the 10 second delays added to the sample code, you have time to
read each message before the next Method executes.

2-20

Brooks Automation

Carrying Out Tasks on Equipment Selecting and Downloading a Recipe

The three messages you see, in sequence, are shown below:

kethod ‘List all' of Service 'GemProcessPrograms’
completed far Toal 'BTU T aal

Method 'Besource request upload' of Service
"FE|RezaurceT ransfer' completed far Toal ‘BT
Tool

kethod 'Rezource ranzfer download' of Service
"FE|RezourceT ransfer completed far Taal 'BTL
Toal

Help E =it

To generate a delay between messages, the sample application u&esghe
statement from a Windows Visual Basic library. Refer to the Appendix,
Application Codep. A-1, for more information and for a complete list of the
code.

2-21

Application Developer's Guide

Tips and Tricks 3

Topics in this chapter

Using Non-Modal Dialog Boxes, p. 3-2

Using Daisy-Chained Services/Methods, p. 3-2
Using Variables to Maintain Context, p. 3-3
Waiting for Events, p. 3-3

Stopping an Application, p. 3-3

This chapter presents a few tips and tricks to follow when writing TOM
applications.

3-1

Application Developer's Guide

‘ Using Non-Modal Dialog Boxes Tips and Tricks

Using Non-Modal Dialog Boxes

To display a dialog box from the application, you need to be sure it is a non-
modal dialog box. For example, to display a form named NotifyForm, you
would use Show 0:

NotifyForm.Show 0

CAUTION

You should avoid using modal dialog boxes in TOI/
applications. Do not display a form that waits for a
reply usingShow 1 , because that makes the form =
modal dialog box. When you use a modal dialog box
in a TOM application, TOM Core becomes
suspended—all action stops.

To display the form in a non-modal dialog box, yoll
should always use tt&how 0 method rather than
Show 1.

Using Daisy-Chained Services/Methods

The best approach to using multiple Services is daisy-chaining Services by
having one Service call another. This technique is essentially the technique
thatGemEstablishCommunicationses when it callBrotocolSECSYou

cannot see this action taking place—it happens in the background. Your own
custom Services can take similar action. For more information on writing
Services, refer to thEool Object Model (TOM) Service Developer’'s Guide

NOTE TOM Tip—Using Daisy-Chained Services/Methods

You can and should daisy chain Services by having one
Service call the Method of the next Service, and the Method
of the next Service call the Method of another Service, and
S0 on.

3-2

Brooks Automation

‘ Tips and Tricks Using Variables to Maintain Context

Using Variables to Maintain Context

A recommended way you can use local variables is to maintain context across
multiple routines or Services. Remember, you can useatng@roperty of a
Service to pass information from that Service to another Service.

NOTE TOM Tip—Maintaining Context across Routines/Services

To maintain context across multiple routines/Methods, you
should declare a local variable and pass it from routine to
routine (or Service to Service). Each routine (or Service)
then knows what the previous routine has done or can use
information from the Method that just executed.

Waiting for Events

NOTE TOM Tip—Waiting for Events

Your application cannot receive Events from the TOM
control or any control duringorm_Load . So, do not have
your code wait for an Event Form_Load .

Stopping an Application

NOTE TOM Tip—Stopping an Application While Method Is Active

You should always stop an application between Method
invocations, rather than while a Method is running.

3-3

Application Developer's Guide

.
Application Code A
Appendix

Topics in This Appendix

Complete Code of Recipe Application, p. A-2
General Declarations, p. A-2

ReportError Function, p. A-3

btnApply_Click Routine, p. A-3
btnBrowse_Click Routine, p. A-4
ButtonHelp_Click Routine, p. A-4
cboRecipe_Click Routine, p. A-4

Form_Load Routine, p. A-5

ISetupService Routine That Form_Load Calls, p. A-6
Form_Unload Routine, p. A-7
radDisableAlarms_Click Routine, p. A-7
radEnableAlarms_Click Routine, p. A-8
radEstabComms_Click Routine, p. A-8
tomCtrl1_EventNotification Routine, p. A-9
tomCtrl1_MethodNotification Routine, p. A-9
Upload_Recipe Routine, p. A-10
Download_Recipe Routine, p. A-11
tomCtrl1_StatusNotification Routine, p. A-11
ButtonExit_Click Routine, p. A-11
txtEventld_Change Routine, p. A-12
txtAlarmld_Click Routine, p. A-12

This appendix presents the full code for the sample application.

The code for the application is included in the Service's Developer’s Kit
(SDK) in a project namenhyrecipevbp. You can find this project under
FASTech\Sw\DewSamples\apps\MyRecipe

A-1

Application Developer's Guide

‘ Complete Code of Recipe Application Application Code Appendix

Complete Code of Recipe Application

NOTE Thesleep statement in this code is available only if you
declare the appropriate library by having the following
Declare statement in éasfile (the sample one is in
recipebay:

Declare Sub Sleep Lib “kernel32” (ByVal dwMilli-
seconds As Long)

' ---- FASTech Integration. Copyright 1996-1997

' Sample code is provided to customers for unsupported
' use only. Technical Support will accept notification

' of problems in sample services and applications, but

' FASTech will make no guarantee to fix the problems in
' current or future releases.

General Declarations

Option Explicit
' This is the TOM tool used in the TOM Application
Private Const TOOL_NAME = "BTU recipe example"

' This is the database file where the tool is defined
Private Const DATABASE_NAME = "myrecipe.mdb"

' Where you can find help file info about this application

' For a detailed explanation of this application, please refer
'to the TOM Application Developer's Guide

‘on the CD in Acrobat PDF format.

' Private Const APP_HELPFILE = "myrecipe.hlp"

' Private Const APP_HELP_CONTEXT = 50001

' Specify needed services

' using their generic service names.

Private Const SRV_GEMPROCESS = "GemProcessPrograms"

Private Const SRV_VFEIRESXFER = "VFEIResourceTransfer"

Private Const SRV_GEMALARMMGMT = "GemAlarmManagement"

Private Const SRV_GEMREPORTS = "GemReports"

Private Const SRV_GEMESTABCOMMS = "GemEstablishCommunications"
Private Const SRV_PROTOCOLSECS = "ProtocolSECS"

' A TOM application must keep a reference to the top-level
' TOM object over the lifetime of TOM tools.
Private m_oTOM As tom.ToolObjectModel

' After our tool is instantiated, this reference keeps it

A-2

Brooks Automation

Application Code Appendix Complete Code of Recipe Application

Private m_oTool As tom.Tool

' References to service objects used in application
Private m_oGemProcess As tom.Service

Private m_oVFEIResourceXfer As tom.Service
Private m_oGemAlarmMgmt As tom.Service
Private m_oGemReports As tom.Service

Private m_oGemEstablishComms As tom.Service
Private m_oProtocolSecs As tom.Service

' References to other objects
Private m_oCurrStatusLabel As Label

ReportError Function

'ReportError function called when an error occurs
Public Sub ReportError(strMessage As String)
If (Err.Number <> 0) Then

MsgBox "Error " & Str(Err.Number) & "(" & Err.Description_
&")" & strMessage

End If
End Sub

btnApply_Click Routine

Private Sub btnApply_Click()

Dim objDataltemCollectionEvents As Dataltem
Dim clonedMeth As tom.Method

On Error Resume Next

' Set up events on the tool.

' Use the reference to the GemReports service.
If radSetUpEvents.Value = 0 Then Exit Sub

Set clonedMeth = m_oGemReports.Methods.Iltem_
("Enable™).Clone

'Get "Collection event" data item from "Enable" Method
Set objDataltemCollectionEvents = _
clonedMeth.Inputs.ltem("Collection events")

'Clear out the possible previous list of event IDs.
objDataltemCollectionEvents.Clear

'Set Event Ids Names in the "Collection events" collection.
If txtEventld1.Text <> " Then
objDataltemCollectionEvents.Add (txtEventld1.Text)
End If
If txtEventld2.Text <> "™ Then

Application Developer's Guide

Complete Code of Recipe Application

Application Code Appendix

A-4

objDataltemCollectionEvents.Add (txtEventld2.Text)
End If
If txtEventld3.Text <> " Then
objDataltemCollectionEvents.Add (txtEventld3.Text)
End If
If txtEventld4.Text <> "" Then
objDataltemCollectionEvents.Add (txtEventld4.Text)
End If
'Execute Enable Method from GemAlarmManagement service.
clonedMeth.Execute
ReportError "while enabling a list of events”
End Sub

btnBrowse_Click Routine

Private Sub btnBrowse_Click()
commdlg.DialogTitle = "Find Recipe file"
commdlg.ShowOpen
txtFileName = commdig.filename

End Sub

ButtonHelp_Click Routine

Private Sub ButtonHelp_Click()
' HelpByContext Me.hwnd, APP_HELPFILE, APP_HELP_CONTEXT
End Sub

cboRecipe_Click Routine

Private Sub choRecipe_Click()
Dim cloneMethLocal As tom.Method

"The following statement clones the "List all" method of the
'‘GemProcessPrograms service, which it extracts and stores in
'm_oGemProcess when the form loads and the Form_Load()
‘routine executes. To clone the Method, the statement below
'uses the Clone method of the Method object. Since the clone
'has local scope, when the routine is over, the clone is gone.

If txtFileName.Text = ““ Then Exit Sub

Set cloneMethLocal = m_oGemProcess.Methods._
("List all").Clone

cloneMethLocal.Execute
ReportError "while listing all recipes"
End Sub

Brooks Automation

Application Code Appendix

Complete Code of Recipe Application

Form_Load Routine

' When the main form is loaded, the app must initialize
'the TOM Core. Then it can proceed to instantiate your tool.
Private Sub Form_Load()

Dim ToolTypes As tom.ToolTypes
Dim ToolType As tom.ToolType

Dim MsgForm As frmMessage

Dim fSuccessfulStartup As Boolean

On Error Resume Next

‘While startup has not successfully completed, set local var
‘to False. Later, when form has loaded, set it to True.
fSuccessfulStartup = False

" App.HelpFile = APP_HELPFILE
' Me.HelpContextlD = APP_HELP_CONTEXT

' Create the TOM Core
Err.Clear
Set m_oTOM = CreateObject("tom.ToolObjectModel")
If Err Then
ReportError “ while creating TOM object “ & Err.Description
Else
' User can specify an alternative database
If Command <>"" Then
m_oTOM.DefinitionFile = Command
Else
m_oTOM.DefinitionFile = DATABASE_NAME
End If

' Now, Initialize the TOM Core
Err.Clear

m_oTOM.Initialize tomCtrl1

If Err Then

ReportError “ while initializing TOM Core”_
& Err.Description

Else
' Find our tool in the ToolTypes collection
Set ToolTypes = m_oTOM.ToolTypes
Set ToolType = ToolTypes.ltem(TOOL_NAME)

' Show progress status dialog while TOM instantiates
" the tool. Then catch StatusNotification events sent

Application Developer's Guide

A-5

Complete Code of Recipe Application Application Code Appendix

' by the TOM Control and display the events in this
' dialog.

Set MsgForm = New frmMessage
MsgForm.Show

MsgForm.Refresh

Set m_oCurrStatusLabel = MsgForm.LabelMsg

' Tell TOM Core to instantiate the tool

' Assign a unique name to this instantiation

Err.Clear

Set m_oTool = m_oTOM.Tools.Add(ToolType, "BTU Tool")
If Err Then

MsgBox "Unable to create tool: " & Err.Description,_
vbExclamation, App.Title

End If

' Now display status notifications in our main window
Set m_oCurrStatusLabel = LabelStatus
Unload MsgForm

‘Set up Service objects in separate routine
ISetupServices

‘Now that form has loaded and services are ready,
‘set local var to True.
fSuccessfulStartup = True
End If
If Not fSuccessfulStartup Then
Unload Me
End If
End Sub

ISetupService Routine That Form_Load Calls

The example uses a separate routine that it calls from diim Load to
get a reference to each Service it uses:

Private Sub ISetupServices()
On Error Resume Next

' Find the Service objects you want/extract each from collection

Set m_oGemProcess = m_oTool.Resources.ltem(1)._
Services.ltem(SRV_GEMPROCESS)

ReportError "while finding the GemProcessPrograms Service"

Set m_oVFEIResourceXfer = m_oTool.Resources.ltem(1)._
Services.ltem(SRV_VFEIRESXFER)

ReportError "while finding the VFEIResourceTransfer Service"

Set m_oGemAlarmMgmt = m_oTool.Resources.ltem(1)._
Services.ltem(SRV_GEMALARMMGMT)

A-6

Brooks Automation

Application Code Appendix

Complete Code of Recipe Application

ReportError "while finding the GemAlarmManagement Service"

Set m_oGemReports = m_oTool.Resources.ltem(1)._
Services.ltem(SRV_GEMREPORTS)

ReportError "while finding the GemReports Service"

Set m_oGemEstablishComms = m_oTool.Resources.ltem(1)._
Services.ltem(SRV_GEMESTABCOMMS)

ReportError "while finding the GemEstablishCommunications
Service"

Set m_oProtocolSecs = m_oTool.Resources.ltem(1)._
Services.ltem(SRV_PROTOCOLSECS)

ReportError "while finding the ProtocolSECS Service"

Exit Sub
End Sub

Form_Unload Routine

Private Sub Form_Unload(Cancel As Integer)

' Remember to set m_oTOM to nothing, so it can go away.
Set m_oTool = Nothing
Set m_oTOM = Nothing
Set m_oCurrStatusLabel = Nothing

End Sub

radDisableAlarms_Click Routine

Private Sub radDisableAlarms_Click()
Dim clonedMeth As tom.Method
If txtAlarmld.Text = "" Then Exit Sub
'Disable a single GEM alarm.
'Use the reference to the GemAlarmManagement service
'First clone Disable method of GemAlarmManagement service.

‘Then set the ALID variable in the input collection of the
'Disable Method.

Set clonedMeth = m_oGemAlarmMgmt.Methods.Iltem_
("Disable").Clone

clonedMeth.Inputs.ltem("ALID").Value = txtAlarmld.Text
'Execute Disable method from GEMAlarmManagement service.
clonedMeth.Execute

'After you call Execute method of a Method object,

‘the TOM Core has a reference to the object as long as the
‘routine is executing. After the routine finishes executing 'TOM
Core no longer retains the reference.

'After this routine ends, the reference goes away. You can

‘also save the reference after the method is complete in order

'to maintain access to outputs from the method. If you want to
'save a method after it has executed, you should create a

Application Developer's Guide

A-7

Complete Code of Recipe Application

Application Code Appendix

A-8

‘global reference for it rather than a reference local
'to the routine.

ReportError "while disabling alarm" & Str(txtAlarmlid)
End Sub

radEnableAlarms_Click Routine

Private Sub radEnableAlarms_Click()
Dim clonedMeth As tom.Method
' Enable all GEM alarms.
' Use the reference to the GemAlarmManagement service

Set clonedMeth = m_oGemAlarmMgmt.Methods.ltem_
("Enable All").Clone

' Run 'Enable All' Method from GEMAlarmManagement service.

clonedMeth.Execute
ReportError "while enabling GEM alarms"
End Sub

radEstabComms_Click Routine

Private Sub radEstabComms_Click()
Dim clonedMeth As tom.Method
'Set attributes of the ProtocolSECS service.
"The GemEstablishCommunications service then uses runs the
'ProtocolSECS service when it communicates with the tool.
'For your tool, you may need to set additional attributes
‘of this service.
m_oProtocolSecs.Attributes.ltem("Baud").Value = "9600"

m_oProtocolSecs.Attributes.ltem("IPAddressLocal")._
Value = "0.0.0.0"

m_oProtocolSecs.Attributes.ltem("IPAddressRemote")._
Value = "255.255.255.100"

"You would set the IPPortLocal and IPPortRemote attributes for
'a terminal server

m_oProtocolSecs.Attributes.ltem("IPPortLocal").Value_
="5000"

m_oProtocolSecs.Attributes.ltem("IPPortRemote").Value_
="5000"

'You set the PortType to HSMS by setting it to 1.

'Since you need to be able to test this sample without a tool,
‘the PortType is being set to the default of O for an RS-232
‘connection. For RS-232, you also needs to set the SerialPort.

m_oProtocolSecs.Attributes.ltem("PortType").Value = "0"
m_oProtocolSecs.Attributes.ltem(“SerialPort”).Value = “COM1”

‘Establish communication with the tool.

Brooks Automation

Application Code Appendix

Complete Code of Recipe Application

'Use the reference to the GemEstablishCommunications service.

Set clonedMeth = m_oGemEstablishComms.Methods.Iltem_
("Connect").Clone

clonedMeth.Execute
ReportError "while opening the SECSProtocol Serial Port"
End Sub

tomCtrl1_EventNotification Routine

Private Sub tomcCtrl1_EventNotification(ByVal tomEvent As Object)
Select Case tomEvent.Name
Case "Alarm set"
If m_oCurrStatusLabel Is Nothing Then Exit Sub

m_oCurrStatusLabel = tomEvent.Outputs.
ltem("ALTX").Value & “ Alarm set”

m_oCurrStatusLabel.Refresh
Case "Alarm clear"
If m_oCurrStatusLabel Is Nothing Then Exit Sub

m_oCurrStatusLabel = tomEvent.Outputs.ltem_
("ALTX").Value & “ Alarm cleared”

m_oCurrStatusLabel.Refresh
End Select
End Sub

tomCtrl1_MethodNotification Routine

Private Sub tomCtrl1_MethodNotification(ByVal tomMethod As
Object)

Dim counter

Select Case tomMethod.Name
‘GemAlarmManagement Enable All method
Case "Enable all"

'‘GemAlarmManagement Disable method
Case "Disable"

'GemEstablishCommunications
Case "Connect"

'Retrieve the model number and software revision from the
‘outputs of the method.

"The statements shown below set MDLN and SOFTREYV fields
'in the GUI using the Value property of the outputs from
‘the Connect method:

If tomMethod.Service.Name =SRV_GEMPROCESS Then
txtMdIn.Text = tomMethod.Outputs.ltem("MDLN").Value
txtMdIn.Refresh
ixtSoftRev. Text = tomMethod.Outputs.ltem("SOFTREV").Value

Application Developer's Guide

A-9

Complete Code of Recipe Application Application Code Appendix

txtSoftRev.Refresh
End If

'‘GemReports
Case "Enable”

'GemProcessPrograms List All method
Case "List all"

'Retrieves the Recipes from the Outputs that the application
'set when it executed the "List all" method of the]
'‘GemProcessPrograms service(in cboRecipe_Click() routine)

If tomMethod.Service.Name = SRV_GEMPROCESS Then
For counter=1To 4

{:/bclJRecipe.Addltem tomMethod.Outputs.ltem(counter)._
alue

Next counter
cboRecipe.Refresh
‘ Delay -- Strictly for demo purposes. Delays next Method
‘ s0 you may read the status message that is displaying.
Sleep 5000
' Calling Upload Recipe
Call Upload_Recipe(tomMethod, cboRecipe.Text)
End If

'VFEIResourceTransfer Resource Request Upload method
Case "Resource request upload"”
If tomMethod.Service.Name = VFEIRESXFER Then

tomMethod.Tag = tomMethod.Outputs.ltem_
("Resource body").Value

‘ Delay -- Strictly for demo purposes. Delays next Method
‘ s0 you may read the status message that is displaying.
Sleep 5000

Call Download_Recipe(tomMethod, choRecipe.Text)
End If

'VFEIResourceTransfer Resource Transfer Download method
Case "Resource transfer download"

End Select
End Sub

Upload_Recipe Routine

Private Sub Upload_Recipe(RecipeMethod As tom.Method, Recipe As
String)

Dim clonedMeth As tom.Method

Set clonedMeth = m_oVFEIResourceXfer.Methods.Iltem_
("Resource request upload").Clone

clonedMeth.Inputs.ltem("Resource type").Value = "Recipe"

A-10

Brooks Automation

Application Code Appendix Complete Code of Recipe Application

clonedMeth.Inputs.ltem("Resource ID").Value = Recipe

clonedMeth.Inputs.ltem("Resource file").Value = _
txtFileName

clonedMeth.Execute

ReportError "while requesting recipe upload"”

End Sub

Download_Recipe Routine

Private Sub Download_Recipe(RecipeMethod As tom.Method, Recipe
As String)

Dim clonedMeth As tom.Method

Set clonedMeth = m_oVFEIResourceXfer.Methods.ltem_
("Resource transfer download").Clone

'Copy inputs from previously exeuted method to this one.
'Also copy outputs from previously executed method to this
‘one. RecipeMethod contains the previously executed method.

clonedMeth.Inputs.ltem("Resource type").Value = _
RecipeMethod.Inputs.ltem("Resource type").Value

clonedMeth.Inputs.ltem("Resource ID").Value = _
RecipeMethod.Inputs.ltem("Resource ID").Value

clonedMeth.Inputs.ltem("Resource file").Value = _
RecipeMethod.Inputs.ltem("Resource file").Value

clonedMeth.Inputs.ltem("Resource body").Value = _
RecipeMethod.Tag

clonedMeth.Execute

ReportError "while downloading recipe"

End Sub

tomCtrl1_StatusNoatification Routine

Private Sub tomCtrl1_StatusNotification(ByVal StatusText As

String)
If m_oCurrStatusLabel Is Nothing Then Exit Sub
m_oCurrStatusLabel = StatusText
m_oCurrStatusLabel.Refresh

End Sub

ButtonExit_Click Routine

Private Sub ButtonExit_Click()
Unload Me
End Sub

A-11

Application Developer's Guide

Application Code Appendix

Complete Code of Recipe Application

txtEventld_Change Routine

Private Sub txtEventld_Change()
If radEnableAlarms.Value = 0 Then
Exit Sub
Else
Call btnApply_Click
End If
End Sub

txtAlarmld_Click Routine

Private Sub txtAlarmID_Click()
If radDisableAlarms.Value = False Then
Exit Sub
Else
Call radDisableAlarms_Click
End If
End Sub

A-12

Application Developer's Guide

Index

A E

alarms equipment
disabling 2-12, 2-13 communication with
enabling 2-12 Attributes

applications finding 2-2
cleaing up objects on termination 1-23 required 2-3
compiling 1-24 establishing 2-2
sample Services required 2-2, 2-4

purpose 1-3 setting Attributes 2-3

steps to writing 1-2 Event notificationsl-22
stopping 3-3 setting up 1-22
terminating 1-23 Events

Attributes waiting for
setting to communicate with equipment 2-3 restrictions 3-3

C F

constants Form_Loadl-12

Service 1-10
context across multiple routines
maintaining 3-3
controls
declaring 1-11
required 1-5, 1-7
custom controls
required 1-5

D

database
assigning to application 1-8
operator entering name 1-13
database constant
declaring 1-8
DataDefs
setting for Method 2-9
dialog boxes
restrictions 3-2

restrictions 1-15
Form_Unloadl-23
forms

unloading 1-23

G

GemAlarmManagemerz-12
GemEstablishCommunications
executing 2-4
GemProcessPrograr2s15
GemReport2-8

H

Help button

code for 1-23
Help file

tying in 1-9, 1-23

Inputs

TOM Application Developer's Guide

Index-1

Index

setting for Method 2-9
setting with Outputs 2-16

L
Lights Out TOM Controll-5
M

Method completion
notifications 1-19
setting up 1-20
MethodNotification
completing Method execution 2-6
List all 2-15
Resource request upload 2-17
when TOM calls 1-19
Methods
cloned
adding data to 2-9
completing execution 2-6
daisy-chaining 2-17, 3-2
Disable 2-13
Enable All 2-12
executing 1-19, 2-5, 2-10
Inputs
setting with Outputs 2-16
List all 2-15
Outputs
using to set Inputs 2-16
passing data from one to another 2-17
Resource request upload 2-16
Resource transfer download 2-17, 2-18

N

notifications
Event 1-22
Method completion 1-20
status 1-21

O

Outputs
retrieving from Method 2-15

using to set Inputs of another Method 2-16

Index-2

P

private constants
recommended 1-8

ProtocolSECS Service
Attributes required 2-2

R

recipes

downloading 2-14

retrieving list 2-15

selecting 2-14
references

required 1-6

declaring 1-10

Services 1-11

Tool object 1-11

Tool Object Model 1-10
required Services

finding 1-15

retrieving 1-15
Resource request upload Methddl 6
Resource transfer download Meth?dl7, 2-18

S

Services

daisy-chaining 3-2
GemAlarmManagement 2-12
GemEstablishCommunications 2-4
GemProcessPrograms 2-15
GemReports 2-8
Methods

completing execution 2-6

executing 1-19, 2-5
passing values between 2-18
ProtocolSECS 2-2
references 1-11
required

finding 1-15

retrieving 1-15
retrieving from database 1-15
setting up events 2-8
standard

selecting 1-10

Brooks Automation

Index

VFEIResourceTransfer 2-16
standard Services

selecting 1-10
status notificationd-21

T

TOM control1-5
adding to application 1-7
name in application 1-7
TOM Core
creating 1-12
Event notifications 1-22
initializing 1-13

Method completion notifications 1-20

status notifications from 1-21
TOM Tool constant

declaring 1-8

tomctrl 1-5

Tool 1-12

Tool object
instantiation 1-11

preparing for 1-13

instantiation process 1-14
references 1-11

Tool Object Modell-6
reference 1-10

Tool Object Model object
creating 1-12

V
VFEIResourceTransfe2-16

Index-3

TOM Application Developer's Guide

	Developing Simple Application 1
	What Is a TOM Application?
	Writing a TOM Application in Visual Basic
	Defining the Application
	Adding TOM Control to Visual Basic Toolbox
	Creating Reference to the Tool Object Model
	Putting a TOM Control in the Application
	Selecting a Tool from the Database
	Tying in a Help File
	Selecting Standard Services
	Declaring References
	Generating Code to Trigger When Form Loads
	Retrieving and Setting Service Attributes
	Executing a Service Method
	Receiving Method Completion Notifications from TOM Core
	Receiving Status Notifications from TOM Core
	Receiving Event Notifications from TOM Core
	Creating Code for Help Button
	Unloading the Application Form
	Compiling the Application in Visual Basic Project

	Carrying Out Tasks on Equipment 2
	Establishing Communication with Equipment
	Setting Up Collection Events
	Enabling and Disabling Alarms
	Selecting and Downloading a Recipe

	Tips and Tricks 3
	Using Non-Modal Dialog Boxes
	Using Daisy-Chained Services/Methods
	Using Variables to Maintain Context
	Waiting for Events
	Stopping an Application

	Application Code A
	Complete Code of Recipe Application

	Index

