
TOM Application Developer’s Guide

November 1999

STATIONworks Version 2.1
A FASTech MES Product

This document contains information that is the property of Brooks Automation, Inc., Chelmsford, MA 01842, and is furnished
for the sole purpose of the operation and the maintenance of FASTech products of Brooks Automation, Inc. No part of this
publication is to be used for any other purpose, and is not to be reproduced, copied, disclosed, transmitted, stored in a retrieval
system, or translated into any human or computer language, in any form, by any means, in whole or in part, without the prior
express written consent of Brooks Automation, Inc.

Published byBrooks Automation, Inc.

15 Elizabeth Drive / Chelmsford, Massachusetts 01248 / USA
(978) 262-2400
FAX (978) 262-2500
http://www.brooks.com OR www.fastech.com

Copyright© 1999 by Brooks Automation, Inc. All rights reserved.

Though at Brooks Automation, Inc., we make every effort to ensure the accuracy of our documentation, Brooks assumes no responsibility
for any errors that may appear in this document. The information in this document is subject to change without notice.

Sample code that appears in documentation is included for illustration only and is, therefore, unsupported. This software is provided free of chargeand
is not warranted by Brooks in any way. FASTech Products Technical Support will accept notification of problems in sample applications, but Brooks
will make no guarantee to fix the problem in current or future releases.

FASTech’s CELLman, CELLtalk,CELLguide, Grapheq, WINclient, TOM, STATIONSworks, and FASTspc are trademarks of Brooks Automation, Inc.
FASTech, FASTech’s CELLworks and FACTORYworks are registered trademarks of Brooks Automation, Inc.

Acrobat Reader is a trademark of Adobe Systems Incorporated.
CodeCenter, ObjectCenter, and TestCenter are trademarks of CenterLine.
DIGITAL UNIX is a trademark of Digital Equipment Corporation.
Glance is a trademark of Hewlett-Packard
HP-UX and Glance are trademarks of Hewlett-Packard Company.
Ingres is a trademark of Ingres Corporation.
ORACLE, ORACLE 7, SQL*Net, and SQL*Plus are registered trademarks of Oracle Corporation.
OSF/Motif is a trademark of Open Software Foundation, Inc.
POLYCENTER is a trademark of Computer Associates International, Inc.
PostScript is a registered trademark of Adobe Systems, Inc.
Purify, Quantify, PureCover are trademarks of Pure Software
Seagate Crystal Reports and Seagate Crystal Info are trademarks or registered trademarks of Seagate Technology, Inc. or one of its subsidiaries
SEMI is a trademark of Semiconductor Equipment and Materials International.
Solaris is a trademark of Sun Microsystems, Inc.
SPARCompiler, UltraSPARC, and all other SPARC trademarks are registered trademarks of SPARC International, Inc.
Sun is a trademark of Sun Microsystems, Inc.
Sybase is a trademark of Sybase, Inc.
System V and SVID (System V Interface Definition) are trademarks of American Telephone and Telegraph Co.
TIB is a trademark of Teknekron Software Systems, Inc.
Tools.h++ and DB.h++ are trademarks of RogueWave Software, Inc.
UNIX is a registered trademark of X/Open Company, Ltd.
SmartShapes and Visio are registered trademarks of Visio Corporation.
Windows NT, Active X, and Visual Basic are trademarks of Microsoft Corporation.
Workstream is a trademark of Consilium, Inc.
X Window system is a trademark of the Massachusetts Institute of Technology.
XRunner is a trademark of Mercury Interactive.
All other product names referenced are believed to be the registered trademarks of their respective companies.

Table of Contents
Chapter 1 Developing Simple Application

What Is a TOM Application? ... 1-2
Writing a TOM Application in Visual Basic ... 1-2
Defining the Application... 1-3
Adding TOM Control to Visual Basic Toolbox.. 1-5
Creating Reference to the Tool Object Model ... 1-6
Putting a TOM Control in the Application ... 1-7
Selecting a Tool from the Database .. 1-8
Tying in a Help File .. 1-9
Selecting Standard Services.. 1-10
Declaring References ... 1-10
Generating Code to Trigger When Form Loads ... 1-12
Retrieving and Setting Service Attributes ... 1-18
Executing a Service Method... 1-19
Receiving Method Completion Notifications from TOM Core........................ 1-20
Receiving Status Notifications from TOM Core ... 1-21
Receiving Event Notifications from TOM Core .. 1-22
Creating Code for Help Button .. 1-23
Unloading the Application Form ... 1-23
Compiling the Application in Visual Basic Project ... 1-24

Chapter 2 Carrying Out Tasks on Equipment

Establishing Communication with Equipment ... 2-2
Setting Up Collection Events ... 2-8
Enabling and Disabling Alarms.. 2-12
Selecting and Downloading a Recipe ... 2-14

Chapter 3 Tips and Tricks

Using Non-Modal Dialog Boxes .. 3-2
Using Daisy-Chained Services/Methods ... 3-2
Using Variables to Maintain Context.. 3-3
Waiting for Events ... 3-3
Stopping an Application .. 3-3

Appendix A Application Code

Complete Code of Recipe Application ... A-2

Index
iii
Application Developer’s Guide

INFO

n to
Developing Simple Application 1

Topics in this chapter

This chapter presents fundaments of developing a simple TOM applicatio
replace of TOM Explorer. The code for the application is included in the
Service’s Developer’s Kit (SDK) in a project namedmyrecipe.vbp. You can
find this project inFASTech/TOM/Samples/apps/myrecipe.

What Is a TOM Application?, p. 1-2

Writing a TOM Application in Visual Basic, p. 1-2

Defining the Application, p. 1-3

Adding TOM Control to Visual Basic Toolbox, p. 1-5

Creating Reference to the Tool Object Model, p. 1-6

Putting a TOM Control in the Application, p. 1-7

Selecting a Tool from the Database, p. 1-8

Tying in a Help File, p. 1-9

Selecting Standard Services, p. 1-10

Declaring References, p. 1-10

Generating Code to Trigger When Form Loads, p. 1-12

Retrieving and Setting Service Attributes, p. 1-18

Executing a Service Method, p. 1-19

Receiving Method Completion Notifications from TOM Core, p. 1-20

Receiving Status Notifications from TOM Core, p. 1-21

Receiving Event Notifications from TOM Core, p. 1-22

Creating Code for Help Button, p. 1-23

Unloading the Application Form, p. 1-23

Compiling the Application in Visual Basic Project, p. 1-24

N OT E You must use the Professional or Enterprise Edition of Visual
Basic Version 5.00 when developing TOM applications.
1-1
Application Developer’s Guide

What Is a TOM Application? Developing Simple Application

or.

 in
What Is a TOM Application?

A TOM application differs from a STATIONworks application. While
STATIONworks applications run the equipment by creating an equipment
manager in state machine form, a TOM application interacts with the
equipment directly through the Tool Object Model, just the way TOM
Explorer does. The difference between the two is the scope.

STATIONworks state machines can interact with the FACTORYworks MES
and then turn around and interact with the equipment, all from the same
machine.

TOM applicaitons interact with the equipment. You can write such an
application to replace TOM Explorer as a graphical interface for an operat

Writing a TOM Application in Visual Basic

To write an application, after you start up Visual Basic, carry out the tasks
each of the sections that follow, outlined below:

■ Define the application requirements.

■ Draw any Visual Basic forms required.

■ Add the TOM control (tomctrl) to the Visual Basic toolbox.

■ Create a reference to the Tool Object Model.

■ Put the TOM control in the main Visual Basic form.

■ Declare constants.

■ Declare object references.

■ Retrieve/set Service Attributes.

■ Execute Service Methods.

■ Handle Method completion notifications.

■ Handle status notifications.

■ Handle Event notifications.

■ Compile the application.

■ Test the application.
1-2
Brooks Automation

Defining the ApplicationDeveloping Simple Application

play

s

Defining the Application

Let’s suppose you want to develop a simple application to:

■ Initiate communication with the equipment
■ Enable all alarms on the tool
■ Disable a particular alarm on the tool
■ Set up particular events on the tool
■ Let you select a recipe and download that recipe to the tool

You need a form where the operator can take all of these actions. You dis
this form (shown below) initially when the application runs.recpfrm.pcx

You also need another form to display messages while the application set
itself up. The MsgForm should be like the one that follows:

Some names for the controls on the main form are in the next illustration.
1-3
Application Developer’s Guide

Defining the Application Developing Simple Application
radEstabComms

radSetUpEvents

txtEventId1

btnApply

radEnableAlarms

txtAlarmId

radDisableAlarms

btnBrowse

txtEventId2

txtEventId3

txtEventId4

cboRecipe

txtFileName

txtMdln

txtSoftRev
1-4
Brooks Automation

Adding TOM Control to Visual Basic ToolboxDeveloping Simple Application
Adding TOM Control to Visual Basic Toolbox

To add the TOM control (tomctrl) to the Visual basic Controls Toolbox:

1. SelectProject => Components and click theControls tab.

2. Select theLights Out TOM Control from the list by clicking on its
check box.tomctrl1.pcx

3. If you do not see the control in the list, click onBrowse and find the
control under thesystem32 directory.

4. The TOM control appears in the Visual Basic Toolbox as a wrench.
toolbox2.pcx

TOM
Control
in Toolbox
1-5
Application Developer’s Guide

Adding TOM Control to Visual Basic Toolbox Developing Simple Application

es.
n

Creating Reference to the Tool Object Model

To add a reference to the Tool Object Model as follows:

1. SelectProject => References from the menu bar.

2. In theReferences dialog, selectTool Object Model by clicking on
its check box.tomrefs3.pcx

If you scroll further down in the list, you see other objects related to TOM,
such as TOM Standard Services and TOM Standard Level 2 SECS Servic
You do not have to select these objects; TOM already contains informatio
about them.
1-6
Brooks Automation

Putting a TOM Control in the ApplicationDeveloping Simple Application

ave

 if

 the

r

Putting a TOM Control in the Application

Once you develop a Visual Basic form for the application, as long as you h
added the TOM control to the custom controls and have a reference to the
Tool Object Model, you can add the TOM control to your application. Even
you do not need a GUI for your application, you should have a form where
you can place the TOM control (tomctrl), even if it is the only control in the
form. To add the TOM control, select theTOM icon (wrench) in the Visual
Basic toolbox (see the illustration to the left) and draw a rectangle for it in
form (shown below).toolbox4.pcx & wrench5.pcx

If you look at the properties for the TOM control, you see it is named
tomctrl1 . Later, you use this name (or whatever you change it to) in you
Visual Basic code.props6.pcx
1-7
Application Developer’s Guide

Selecting a Tool from the Database Developing Simple Application

es
ake

ee

t it
arks.

ol

the
Selecting a Tool from the Database

In your TOM application, you start by selecting the Tool you want to work
with. If the Tool exists in the TOM database, it already has particular Servic
associated with it so you can use those standard Services. If you need to m
change in a tool (such as adding a custom Service to it), you can use TOM
Builder or TOM DB Editor (see online Help files).

In theGeneral Declarations section of the code, you should declare
private constants for the following:

■ The TOM Tool you are using in the application.
■ The TOM database the application should use.
■ The Help file and Help context number (seeTying in a Help File, p. 1-9).
■ The Services, both standard and custom, that your application uses (s

Selecting Standard Services, p. 1-10.)

Declare the TOM
Tool Constant

For this example, you use the BTU recipe example as it exists in the
alternative Tool database (see note above). To work with the Tool in your
application, you declare a private constant for it:

' This is the TOM tool used in the TOM Application

Private Const TOOL_NAME = "BTU recipe example"

You can name the constant TOOL_NAME for convenience, but should se
to the exact name of the tool, as it appears in the database, in quotation m

In this case, the Tool is a custom one. In your code, you can select any To
already in the database or any you have added.

Declare the
Database
Constant

For the application to be able to find the database that your Tool and its
Services are stored in, you must declare a constant for the database:

Private Const DATABASE_NAME = "myrecipe.mdb"

The database always has a name of up to eight characters with an MDB
extension. Be sure to put the name of the database in quotation marks.

Once you have a Tool and database, you can later have TOM instantiate
Tool.

Next, you tie a Help file in to your application.

N OT E To run the sample application, use the Tool under
/FASTech/TOM/Samples/apps/MyRecipe/Drivers. In this
location, you find the standard database directories and they
contain the .tbf files required to build the sample tool’s
database. The tool is calledBTU recipe example.
1-8
Brooks Automation

Tying in a Help FileDeveloping Simple Application

 of
 the
ou

you
 HPJ
Tying in a Help File

In theGeneral Declarations section of the code, you need to declare
private constants for the Help file and Help context number for the
application.

Declare Help File
Constants

If you have created a Help file for your Services or your Tool, for your
application to use it, you must declare a constant for it and for the help
context ID (there is no help file for the sample):

' Where you can find help file info about this application

Private Const APP_HELPFILE = "myrecipe.hlp"

Private Const APP_HELP_CONTEXT = 50001

The Help file name must always end in .HLP. If you do not have a Help file
yet, you can leave out these declarations and add them later.

The APP_HELP_CONTEXT value is the one associated with the contents
the Help file. You want the contents to appear when the operator presses
Help button. You associated the context ID with the Help file contents for y
application the same way that it is done in the sample application. Below
can see where the 50001 context ID is associated with the contents in the
file for the Help. (The illustration shows a file open in the Help Workshop,
available through Microsoft.)

Next, you select the Services you want to use in your application.
1-9
Application Developer’s Guide

Selecting Standard Services Developing Simple Application

g
he

d
What

ut

e

eep
t of

d

ls:
Selecting Standard Services

To use standard Services in your TOM application, you start by determinin
which Services are available to the Tool you have selected; then choose t
Services that carry out the actions you want to take. You can browse the
details of the Tool’s Services most easily in TOM Explorer.

Get to know the Services themselves. What kinds of Methods, Events, an
Properties do they have? What kinds of Inputs does each Service need?
kinds of Outputs does it produce?

Declare Service
Constants

In this application, you use a series of standard TOM Services that carry o
the tasks defined earlier. You create constants for those Services in the
General Declarations section of your project:

Private Const SRV_GEMPROCESS = "GemProcessPrograms"

Private Const SRV_VFEIRESXFER = "VFEIResourceTransfer"

Private Const SRV_GEMALARMMGMT = "GemAlarmManagement"

Private Const SRV_GEMREPORTS = "GemReports"

Private Const SRV_GEMESTABCOMMS = "GemEstablishCommunications"

Private Const SRV_PROTOCOLSECS = "ProtocolSECS"

After you declare the constants for the Services, when you declare object
references (next), you declare the Service objects that correspond to thes
constants.

Declaring References

For all TOM applications you must declare references to TOM objects you
intend to use. You create these references in theGeneral Declarations section
of the code. Major objects you need references to include:

■ Tool Object Model object
■ Tool object (to later represent the instantiation of the tool)
■ Service objects
■ Any controls inside forms that the application interacts with

Declare Tool
Object Model
Reference

While the application is operating and Tools are in use, you must always k
a reference to the Tool Object Model object. If this reference were to go ou
scope, the Tools would not be able to work with TOM and the application
would crash. So, you must declare this reference as a global reference an
must not set it toNothing until you intend to exit the application.

This single declaration is required before you can work with any TOM Too

Private m_oTOM As tom.ToolObjectModel
1-10
Brooks Automation

Selecting Standard ServicesDeveloping Simple Application

a

ct;
er to

ces

s

e of

you
aying
The type of a Tool Object Model is tom.ToolObjectModel. Notice that this
object is different from the Tool itself, which you declare next.

Declare Tool
Reference for Tool
Instantiation

Once you later instantiate the Tool, you need to keep that instantiation in
Tool object, which you declare as follows:

Private m_oTool As tom.Tool

The type of this object is tom.Tool.

If this object were to go out of scope, the application would crash, so you
must declare this reference as a global reference. Do not set it toNothing
until you intend to stop using the Tool.

An alternative is to reference the Tool through the Tool Object Model obje
however, declaring a reference for the instantiation makes your code easi
read.

Declare
References to
Service Objects

To refer to and use Services in the application, you should declare referen
to each of them.

' References to Service objects application uses

Private m_oGemProcess As tom.Service

Private m_oVFEIResourceXfer As tom.Service

Private m_oGemAlarmMgmt As tom.Service

Private m_oGemReports As tom.Service

Private m_oGemEstablishComms As tom.Service

Private m_oProtocolSecs As tom.Service

The type for each Service is tom.Service.

Declare Controls
in Forms

Your application must include a form, even if the only control on the form i
the TOM control. However, chances are you need multiple controls in the
form. To have your application work with those controls, you must declare
references to them. The type you need to assign them is based on the typ
control.

For the sample application (this may not be required in your application),
declare a reference to a label whose message you plan to set before displ
it:

Private m_oCurrStatusLabel As Label
1-11
Application Developer’s Guide

Generating Code to Trigger When Form Loads Developing Simple Application

pe

pro-

ed

r
f

r

ted

ct:
Generating Code to Trigger When Form Loads

After you have declared all the constants and references, you are ready to
write the Visual Basic functions. Let’s start with theForm_Load function.
This function runs immediately after you load the form:

Declare Local
Variables and Set
Application
Properties

1. Declare the local variables for the ToolTypes collection and the ToolTy
of the particular Tool the application later uses; also, declare aMsgForm
variable for the messages that need to display during the initialization
cess:

Dim ToolTypes As tom.ToolTypes

Dim ToolType As tom.ToolType

Dim MsgForm As frmMessage

In this routine, you use theMsgForm you created earlier to display the
messages, so you need to refer to it using a local variable here.

2. To ensure that errors are handled, you should always have anOn Error
statement early in the code. You can have anOn Error Resume Next
statement and then on the next line either deal with the error or proce
with the current action, depending on how you want to handle errors:

On Error Resume Next

To deal with the error, you can look at the Err object to find out whethe
or not an error has occurred and then proceed to an appropriate line o
code that handles the error.

3. To have the application use the Help file (if you declared a constant fo
one), you can now set theHelpFile property of theApp object to that
constant, then set theHelpContextID of the current object to the context
ID constant:

App.HelpFile = APP_HELPFILE

Me.HelpContextID = APP_HELP_CONTEXT

Create the TOM
Core

Every application must create the TOM Core as follows:

1. Clear the Err object, so that any error that occurs is the only Err associa
with that object:

Err.Clear

2. Create the Tool Object Model object and set the reference to that obje

Set m_oTOM = CreateObject("tom.ToolObjectModel")
1-12
Brooks Automation

Generating Code to Trigger When Form LoadsDeveloping Simple Application

all
lay:

:

et the

t:

n,
ct:

ing
E:

w

3. If an error occurs when trying to create the Tool Object Model object, c
a ReportError function (see appendix) and pass it a message to disp

If Err Then

ErrorReport “while creating TOM object ” & Err.Description

Else...

4. If no error occurs, let the operator enter the name of a database as a
command line argument when starting the application, as shown below

<app_name>.exe c:\ <mydirectory>\mydbase.mdb

If the operator does not enter a database, use the database that you s
DATABASE_NAME constant to earlier, which becomes the default. To
set the database, you set theDefinitionFile property of the Tool
Object Model object:

Else...

If Command <> "" Then

m_oTOM.DefinitionFile = Command

Else

m_oTOM.DefinitionFile = DATABASE_NAME

End If

Initialize the TOM
Core and Find the
Tool in the
Collection

After the application creates the TOM Core, it should then initialize TOM:

1. Start, as you did when you created the core, by clearing the Err objec

Err.Clear

2. Call theInitialize Method of the Tool Object Model object:

m_oTOM.Initialize tomCtrl1

3. To handle any error that occurs, display a message box:

If Err Then

ReportError “while initializing TOM Core “ & Err.Description

4. Otherwise, if no error occurs, to find the Tool in the ToolTypes collectio
first set the ToolTypes object to the ToolTypes property of the TOM obje

Else

Set ToolTypes = m_oTOM.ToolTypes

Then set the ToolType object to the particular Tool in the collection us
the Item method and passing it the constant for the Tool, TOOL_NAM

Set ToolType = ToolTypes.Item(TOOL_NAME)

Prepare to
Instantiate the
Tool

Before you have the TOM Core instantiate the Tool, you should prepare to
show the action that is occurring while TOM instantiates the Tool. You sho
the action by displaying theStatusNotification events that the TOM
1-13
Application Developer’s Guide

Generating Code to Trigger When Form Loads Developing Simple Application

ke:

bel

n
ame

ou

ou
control sends to the application. You can display a status message in the
MsgForm to show the action/status notifications. Here are the steps you ta

1. Set theMsgForm to the form that displays messages:

Set MsgForm = New frmMessage

2. Use theShow andRefresh methods to display the form:

MsgForm.Show

MsgForm.Refresh

3. To be sure it displays the correct message, set the reference to the La
object you created earlier to the form’sLabelMsg property value:

Set m_oCurrStatusLabel = MsgForm.LabelMsg

Tell TOM Core
to Instantiate the
Tool

To have the TOM Core instantiate the Tool:

1. Start by clearing the Err object:

Err.Clear

2. Add a new Tool instance to the Tools collection in your TOM Core. Whe
you instantiate the Tool, you assign it a name. You can assign it any n
you want, regardless of what name you assigned to the TOOL_NAME
constant. In this case, the name isBTU Tool:

Set m_oTool = m_oTOM.Tools.Add(ToolType, "BTU Tool")

3. If this process succeeds, you now have a Tool instance to work with. Y
should, of course, check to see if an error occurred and display an
appropriate message if it did; in this case, you callReportError :

If Err Then

ReportError " while creating tool " & Err.Description

End If

4. To display the status notifications in theMsgForm by setting the label to
theLabelStatus value. Later, as the status notifications occur, TOM
sends them to your application by setting theStatusLabel , and this
statement ensures the application displays them.

To see how to ensure the application receives status notifications from
TOM, refer toReceiving Status Notifications from TOM Core, p. 1-21.

5. After the status message displays, since you don’t need it any more, y
can unload the Message form:

Set m_oCurrStatusLabel = LabelStatus

Unload MsgForm
1-14
Brooks Automation

Generating Code to Trigger When Form LoadsDeveloping Simple Application

er-

 in
as:

n,
se
e

ol
Find Required
Service Objects

Next, theForm_Load routine should find the required Services in the
database.

1. When any errors occur trying to find the required Services, you should
always have anOn Error statement that sends the program flow to an
error handling section in the code, because failing to find a required S
vice means other problems could occur:

On Error Resume Next

2. Then, to find the Services, you set the Service object references you
created earlier each to a particular Service. Each particular Service is
the collection of Services associated with the one Resource the tool h

' Find the Service objects you want/extract from Services
' collection

Set m_oGemProcess = m_oTool.Resources.Item(1)._
Services.Item(SRV_GEMPROCESS)

ReportError "while finding the GemProcessPrograms Service"

Set m_oVFEIResourceXfer = m_oTool.Resources.Item(1)._
Services.Item(SRV_VFEIRESXFER)

ReportError "while finding the VFEIResourceTransfer Service"

Set m_oGemAlarmMgmt = m_oTool.Resources.Item(1)._
Services.Item(SRV_GEMALARMMGMT)

ReportError "while finding the GemAlarmManagement Service"

Set m_oGemReports = m_oTool.Resources.Item(1)._
Services.Item(SRV_GEMREPORTS)

ReportError "while finding the GemReports Service"

Set m_oGemEstablishComms = m_oTool.Resources.Item(1)._
Services.Item(SRV_GEMESTABCOMMS)

ReportError "while finding the GemEstablishCommunications
Service"

Set m_oProtocolSecs = m_oTool.Resources.Item(1)._
Services.Item(SRV_PROTOCOLSECS)

ReportError "while finding the ProtocolSECS Service"

The(1) afterItem indicates you want to retrieve the first Resource of
the Tool. In this case, since there is only one Resource in the collectio
you use (1) to refer to it. If there were more than one, you’d have to u
the correct number or the literal name in quotation marks to refer to th
particular Resource.

Each time you try to retrieve a Service from the collection, ideally you
should check for an error.

Restrictions in
Form_Load

Your application cannot receive Events from the TOM control or any contr
duringForm_Load . So, do not have your code wait for an Event in
Form_Load .
1-15
Application Developer’s Guide

Generating Code to Trigger When Form Loads Developing Simple Application
Complete Code of Form_Load

' When the main form is loaded, the app must initialize

' the TOM Core. Then it can proceed to instantiate your tool.

Private Sub Form_Load()

Dim ToolTypes As tom.ToolTypes

Dim ToolType As tom.ToolType

Dim MsgForm As frmMessage

Dim fSuccessfulStartup As Boolean

On Error Resume Next

‘While startup has not successfully completed, set local var

‘to False. Later, when form has loaded, set it to True.

fSuccessfulStartup = False

' App.HelpFile = APP_HELPFILE

' Me.HelpContextID = APP_HELP_CONTEXT

' Create the TOM Core

Err.Clear

Set m_oTOM = CreateObject("tom.ToolObjectModel")

If Err Then

ReportError “ while creating TOM object “ & Err.Description

Else

' User can specify an alternative database

If Command <> "" Then

m_oTOM.DefinitionFile = Command

Else

m_oTOM.DefinitionFile = DATABASE_NAME

End If

' Now, Initialize the TOM Core

Err.Clear

m_oTOM.Initialize tomCtrl1

If Err Then

ReportError “ while initializing TOM Core“_
& Err.Description

Else

' Find our tool in the ToolTypes collection

Set ToolTypes = m_oTOM.ToolTypes

Set ToolType = ToolTypes.Item(TOOL_NAME)

' Show progress status dialog while TOM instantiates

' the tool. Then catch StatusNotification events sent
1-16
Brooks Automation

Generating Code to Trigger When Form LoadsDeveloping Simple Application
' by the TOM Control and display the events in this

' dialog.

Set MsgForm = New frmMessage

MsgForm.Show

MsgForm.Refresh

Set m_oCurrStatusLabel = MsgForm.LabelMsg

' Tell TOM Core to instantiate the tool

' Assign a unique name to this instantiation

Err.Clear

Set m_oTool = m_oTOM.Tools.Add(ToolType, "BTU Tool")

If Err Then

MsgBox "Unable to create tool: " & Err.Description,_
vbExclamation, App.Title

End If

' Now display status notifications in our main window

Set m_oCurrStatusLabel = LabelStatus

Unload MsgForm

‘Set up Service objects in separate routine

lSetupServices

‘Now that form has loaded and services are ready,

‘set local var to True.

fSuccessfulStartup = True

End If

If Not fSuccessfulStartup Then

Unload Me

End If

End Sub

Complete Code of lSetupService Subroutine Form_Load Calls

The example uses a separate routine that it calls from withinForm_Load to
get a reference to each Service it uses:

Private Sub lSetupServices()

On Error Resume Next

' Find the Service objects you want/extract each from collection

Set m_oGemProcess = m_oTool.Resources.Item(1)._
Services.Item(SRV_GEMPROCESS)

ReportError "while finding the GemProcessPrograms Service"

Set m_oVFEIResourceXfer = m_oTool.Resources.Item(1)._
Services.Item(SRV_VFEIRESXFER)

ReportError "while finding the VFEIResourceTransfer Service"

Set m_oGemAlarmMgmt = m_oTool.Resources.Item(1)._
Services.Item(SRV_GEMALARMMGMT)
1-17
Application Developer’s Guide

Generating Code to Trigger When Form Loads Developing Simple Application

u’ll

ase
that

at
ReportError "while finding the GemAlarmManagement Service"

Set m_oGemReports = m_oTool.Resources.Item(1)._
Services.Item(SRV_GEMREPORTS)

ReportError "while finding the GemReports Service"

Set m_oGemEstablishComms = m_oTool.Resources.Item(1)._
Services.Item(SRV_GEMESTABCOMMS)

ReportError "while finding the GemEstablishCommunications
Service"

Set m_oProtocolSecs = m_oTool.Resources.Item(1)._
Services.Item(SRV_PROTOCOLSECS)

ReportError "while finding the ProtocolSECS Service"

Exit Sub

End Sub

Now that the form is loaded and you have a reference to each Service yo
be using, you are ready to work with Service Attributes.

Retrieving and Setting Service Attributes

In most applications you need to retrieve Attributes settings from the datab
or change Attribute settings in memory. You may need to set an Attribute
a Service uses. To set such Attributes:

1. Be sure you have a reference to the Service that owns the Method.

2. To set the Attribute’s value, retrieve it from the Attributes collection of th
Service. For example, to set theBaud Attribute of theProtocolSECS
Service, you would access it using the following structure:

m_oProtocolSecs.Attributes.Item("Baud").Value = "9600"

This setting is in memory only and does not affect the database.

For details on the Attributes the sample application uses, refer toCarrying
Out Tasks on Equipment, p. 2-1.
1-18
Brooks Automation

Executing a Service MethodDeveloping Simple Application

ce

ute
py
r
ds,

a

oes

ds

,

.

Executing a Service Method

In most applications you need to be able to execute a Service Method. On
you verify that the Service is available, you can execute Methods of the
Service.

Clone Method To execute a Method of a Service, you must clone it first, then execute the
clone. It is important that you clone it rather than executing the original
Method, because another application or a Service could be trying to exec
the original Method. By cloning the Method, your applictionhas its own co
and does not interfere with another application or Service trying to clone o
execute the original. If you have all applications and Services clone Metho
you eliminate potential conflicts.

Let’s look at an example. To execute theConnect Method of the
GemEstablishCommunications Service, you first clone the Method. You use
the reference to the Service and access its Methods collection
(m_oGemEstablishComms.Methods). You then use theItem method of a
Methods collection toselect theConnect Method of the Service. You can then
cloneConnect using theClone method of a Method object:

Dim clonedMeth As tom.Method

Set clonedMeth = m_oGemEstablishComms.Methods.Item("Connect")_
.Clone

Execute Method Once you have the clone, you execute the clone of the Method using the
Execute method of a Method object:

clonedMeth.Execute

ReportError "while opening the SECSProtocol Communication Port"

After you call theExecute method of a Method object, the TOM Core has
reference to the object only as long as the routine is executing. After the
routine finishes executing, TOM Core no longer retains the reference—it g
away.

In addition, whenever this Method or any TOM Method executes, TOM sen
control of the program to theMethodNotification routine for the TOM
control (tomCtrl) object you embedded in the application form. In this case
that TOM control was calledtomctrl1 , so the routine would be
tomctrl1_MethodNotification routine.

It is in this routine that you retrieve the Outputs the Method has produced
1-19
Application Developer’s Guide

Receiving Method Completion Notifications from TOM Core Developing Simple Application

d
e?

d.

nd
Receiving Method Completion Notifications from TOM Core

When a Method executes, the application needs to know when the Metho
completes. But how can your application know when a Method is complet
You set it up to receive Method completion notifications from TOM. You do
that by creating a routine calledtomCtrl1_MethodNotification . The
routine receives a TOM Method as an argument:

Private Sub tomCtrl1_MethodNotification(ByVal tomMethod As
Object)

Identify
the Method
Completing

In theMethodNotification routine, you need to determine which Method
in the application is completing and carry out the final tasks for that Metho

A standard way of setting up this routine is to use aCase statement and enter
the particular code required to complete each Method:

Private Sub tomCtrl1_MethodNotification(ByVal tomMethod As
Object)

Dim counter

Select Case tomMethod.Name

GemAlarmManagement Enable All method

Case "Enable all"

...

'GemAlarmManagement Disable method

Case "Disable"

...

'GemEstablishCommunications

Case "Connect"

...

End Select

If you have more than one Service’s Method with the same name to conte
with, you can determine the Service that owns the Method by using:

strService = tomMethod.Service.Name

Retrieve an Output
from a Method

Usually you want to use the Outputs of a Method you have executed. You
retrieve the Outputs here in theMethodNotification routine. For instance,
suppose you want to retrieve theMDLN andSOFTREV Outputs from the
Connect Method ofGemEstablishCommunications. You could set
corresponding fields in a GUI to the value of each as follows:

Case "Connect"

txtMdln.Text = tomMethod.Outputs.Item("MDLN").Value

txtMdln.Refresh

txtSoftRev.Text = tomMethod.Outputs.Item("SOFTREV").Value
1-20
Brooks Automation

Receiving Method Completion Notifications fromTOM CoreDeveloping Simple Application

n

,

e and
txtSoftRev.Refresh

...

For more on working with Outputs and setting Inputs of Methods, refer to
Selecting and Downloading a Recipe, p. 2-14.

Receiving Status Notifications from TOM Core

In addition to sending Method notifications when a Method executes, TOM
Core also sends status notifications. You may want to have your applicatio
receive those notifications and display them in your form.

To ensure your application receives status notifications as they occur, you
create a routine namedtomCtrl1_StatusNotification that takes a text
string containing a notification as an argument:

Private Sub tomCtrl1_StatusNotification(ByVal StatusText As
String)

TOM Core sends the status text string to this routine.

Check for
Notification

To determine whether or not there is a need to display a status notification
check the value of them_oCurrStatusLabel reference that you created
early in the application. If its value isNothing , it does not contain a status,
so you should exit the routine:

If m_oCurrStatusLabel Is Nothing Then Exit Sub

Display
Notification

Otherwise, you should set the reference to the string passed to the routin
refresh the display:

m_oCurrStatusLabel = StatusText

m_oCurrStatusLabel.Refresh

In this example, theForm_Load routine takes care of actually displaying the
label.

Complete Code for tomCtrl1_StatusNotification

Private Sub tomCtrl1_StatusNotification(ByVal StatusText As
String)

If m_oCurrStatusLabel Is Nothing Then Exit Sub

m_oCurrStatusLabel = StatusText

m_oCurrStatusLabel.Refresh

End Sub
1-21
Application Developer’s Guide

Receiving Method Completion Notifications from TOM Core Developing Simple Application

ou

s
t

Receiving Event Notifications from TOM Core

You may want to have your application receive Event notifications when a
TOM Event occurs in a Service it is using.

To have your application “catch” Events, you must have it use the
EventNotification event of the TOMctrl object.

Prepare for Event
Notifications

The tomCtrl1_EventNotification routine accepts a tomEvent as an
argument:

Private Sub tomCtrl1_EventNotification(ByVal tomEvent_
As Object)

...

End Sub

Identify the Event When the Event intomEvent matches an Event you are interested in, your
code can take specific action. Be sure to include a case for every Event y
are interested in responding to:

Select Case tomEvent.Name

Case "Alarm set"

...

Case "Alarm clear"

...

End Select

Take Specific
Action for Each
Event

For example, if theGemAlarmManagementService receives either anAlarm
set or an Alarm clear Event, your Service can display Output DataItem
from the Event in a GUI by retrieving the value of one of the Event’s Outpu
DataItems, then putting it in the reference to the Event notification display
area and refresh the display:

m_oCurrStatusLabel = tomEvent.Outputs.Item("ALTX").Value &_
“ Alarm set”

m_oCurrStatusLabel.Refresh

You could take similar action for any other Events that occur.

N OT E Terminology—Collection Events vs. Events

Collection events occur on the equipment. Another type of
Event is a TOM object event.EventNotifications are
TOM object Events, usually referred to as simplyEvents.
1-22
Brooks Automation

Receiving Method Completion Notifications fromTOM CoreDeveloping Simple Application

xt

e

Full Code of tomCtrl1_EventNotification Routine

Private Sub tomCtrl1_EventNotification(ByVal tomEvent As Object)

Select Case tomEvent.Name

Case "Alarm set"

If m_oCurrStatusLabel Is Nothing Then Exit Sub

m_oCurrStatusLabel = tomEvent.Outputs.
Item("ALTX").Value & “ Alarm set”

m_oCurrStatusLabel.Refresh

Case "Alarm clear"

If m_oCurrStatusLabel Is Nothing Then Exit Sub

m_oCurrStatusLabel = tomEvent.Outputs.Item_
("ALTX").Value & “ Alarm cleared”

m_oCurrStatusLabel.Refresh

End Select

End Sub

Creating Code for Help Button

View theButtonHelp_Click function and fill in the following code to
associate the Help file with the Help button:

Private Sub ButtonHelp_Click()

 HelpByContext Me.hwnd, APP_HELPFILE, APP_HELP_CONTEXT

End Sub

Because you used constants in this situation, if the Help file or Help conte
numbers change, you can set the constants for them underGeneral
Declarations and leave this piece of the code intact.

Unloading the Application Form

View theForm_Unload routine and add text like the following to it to ensur
that the application’s objects go away before you exit the application:

Private Sub Form_Unload(Cancel As Integer)

Set m_oTool = Nothing

Set m_oTOM = Nothing

Set m_oCurrStatusLabel = Nothing

End Sub

Be sure to set the Tool object reference, TOM object reference, andLabel
reference toNothing .
1-23
Application Developer’s Guide

Receiving Method Completion Notifications from TOM Core Developing Simple Application

ld

r

rd

nt
he
Create Code for
Exit Button

To be sure that the exit button also brings the application down, you shou
have the following routine to respond to that button being pressed:

Private Sub ButtonExit_Click()

 Unload Me

End Sub

Compiling the Application in Visual Basic Project

Your application can be a standard .EXE server, an in-process OLE serve
(DLL), or an out-of-process OLE server (EXE).

The most common type of file you compile your application into is a standa
.EXE file. To create a standard .EXE file, go to the menu bar and selectFile
=> Make EXE File . Visual Basic creates the .EXE file in the project
directory.

Try running the .EXE file to see it in action.

For an explanation of how the sample application carries out the equipme
tasks, proceed to the next chapter, which covers the remaining details of t
sample code.

N OT E TOM Tip—Synchronous Blocking Operations and Modal

Dialog Boxes

Do not use a synchronous blocking operation inside your
Visual Basic code—such an operation stops all action in
TOM.
1-24
Brooks Automation

INFO

er
Carrying Out Tasks on Equipment 2

Topics in This Chapter

This chapter presents how to carry out some common tasks within an
application using standard Services available in TOM. The techniques it
illustrates include passing data from one Method to another within a TOM
application. This chapter assumes you have read Chapter 1.

The code for the application is included in the Service’s Developer’s Kit
(SDK) in a project namedmyrecipe.vbp. You can find this project under
/FASTech/TOM/apps/myrecipe.

The sample uses a graphical user interface (GUI) for convenience. Your
application may talk directly to an MES system or to other applications rath
than working with a GUI.

Establishing Communication with Equipment, p. 2-2

Setting Up Collection Events, p. 2-8

Enabling and Disabling Alarms, p. 2-12

Selecting and Downloading a Recipe, p. 2-14

N OT E You must work with the Professional or Enterprise Edition of
Visual Basic Version 4.00 when developing TOM Services
or applications.
2-1
Application Developer’s Guide

Establishing Communication with Equipment Carrying Out Tasks on Equipment

 set

es
Establishing Communication with Equipment

To communicate with the tool, you always need to work with the
ProtocolSECS Service.ProtocolSECS is a level 1 Service that communicates
directly with the equipment.

Understand
Required Services

Before you can establish communication with the equipment, you need to
Attributes of theProtocolSECSService so that it can communicate with the
equipment.

To see what the Attributes of this Service are, you can expand the Attribut
collection underProtocolSECS in TOM Explorer.
2-2
Brooks Automation

Establishing Communication with EquipmentCarrying Out Tasks on Equipment

 the
ce’s

r

g

l

Retrieve Level 1
Service from
Database

Depending on the the physical setup of the Tool, you may need to change
default settings of these Attributes. First, you must have declared the Servi
constant, generated a reference to it, and retrieved the Service from the
database, all in theForm_Load routine:

Private Const SRV_PROTOCOLSECS = "ProtocolSECS"

Private m_oProtocolSecs As tom.Service

Set m_oProtocolSecs = m_oTool.Resources.Item(1)._
Services.Item(SRV_PROTOCOLSECS)

Create Routine for
Communicating
with Equipment

To have the application establish comunication with the Tool when the
operator clicks theEstablish Communications radio button (see below)

you need to create a routine associated with that button:

Private Sub radEstabComms_Click()

In your facility you most likely do not need GUI, but you could have a simila
routine that the MES triggers.

Set Attributes of
Level 1 Service

Now, in theradEstabComms_Click routine you can set the Attribute values
by referring to the Attributes collection of the Service and using theItem
Method of an Attribute object.

Some Attributes you are required to set:

1. Set theBaud Attribute as follows:

m_oProtocolSecs.Attributes.Item("Baud").Value = "9600"

2. You must always set thePortType to the appropriate number, dependin
on your Tool’s physical setup:

◆ 0—SECS1 connection using RS-232
◆ 1—HSMS connection
◆ 2—SECS1 connection to a terminal server using TCP/IP protocol
◆ 3—SECS1 connection to a terminal server using TELNET protoco

radEstabComms

txtSoftRev

txtMdln
2-3
Application Developer’s Guide

Establishing Communication with Equipment Carrying Out Tasks on Equipment

lt

ese

ice’s
Let’s set the Attribute to the default setting of 0 to run the example:

m_oProtocolSecs.Attributes.Item("PortType").Value = "0"

3. If you are using an RS-232 connection to the Tool, you must set the
SerialPort Attribute to the correct comm port (here you see the defau
setting):

m_oProtocolSecs.Attributes.Item("SerialPort").Value = "COM1"

4. If the tool is connected over a LAN (using HSMS) rather than over an
RS-232 connection, you must set theIPAddressLocal ,
IPAddressRemote , IPPortLocal , andIPPortRemote (here you see
the default settings):

m_oProtocolSecs.Attributes.Item("IPAddressLocal").Value =_
"0.0.0.0"

m_oProtocolSecs.Attributes.Item("IPAddressRemote").Value =_
"255.255.255.100"

m_oProtocolSecs.Attributes.Item("IPPortLocal").Value =_
"5000"

m_oProtocolSecs.Attributes.Item("IPPortRemote").Value =_
"5000"

5. For a terminal server, you need to set only theIPAddressRemote and
IPPortRemote .

You may want to set other Attributes, depending on your Tool setup, but th
are the mandatory settings.

Retrieve the
Communication
Service

Now you are ready to establish communication by using a higher level
Service that calls theProtocolSECSService—GemEstablishCommunications.

To be able to actually establish the communication, you execute the Serv
Connect Method. When you look at this Service in TOM Explorer, notice
that it returns two Outputs after it executes,MDLN andSOFTREV:
2-4
Brooks Automation

Establishing Communication with EquipmentCarrying Out Tasks on Equipment

e to

ts
You can retrieve the values from these Outputs and put them into the
application’s GUI, in the text boxestxtMdln andtxtSoftRev shown in the
next illustration:

You carry out the steps of creating the private constant, creating a referenc
the Service, and retrieving the Service from the database all in the
Form_Load procedure:

Private Const SRV_GEMESTABCOMMS = "GemEstablishCommunications"

Private m_oGemEstablishComms As tom.Service

Set m_oGemEstablishComms = m_oTool.Resources.Item(1)._
Services.Item(SRV_GEMESTABCOMMS)

Clone and Execute
the Connect
Method

Now, as part of theradEstabComms_Click() routine, you can clone the
Connect Method. First, you use the reference to the Service and access i
Methods collection (m_oGemEstablishComms.Methods). You then use the
Item method of a Method object (m_oGemEstablishComms.Methods.Item)
to select theConnect Method of the Service. Once you have accessed the
Method this way, you cloneConnect using theClone method of a Method
object (seeCloning Method Objects in the TOM Help file):

Dim clonedMeth As tom.Method

Set clonedMeth = m_oGemEstablishComms.Methods.Item_
("Connect").Clone

Once you have the clone, you execute the clone of the Method using the
Execute method of a Method object:

clonedMeth.Execute

ReportError "while opening the SECSProtocol Communication Port"

When this Method executes, TOM sends control of the program to the
MethodNotification routine for the TOM control (tomctrl) object you
embedded in the application form.

Let’s proceed to see how you use theMethodNotification routine to
retrieve the Outputs the Method has produced.

radEstabComms

txtMdln

txtSoftRev
2-5
Application Developer’s Guide

Establishing Communication with Equipment Carrying Out Tasks on Equipment

d

he

ds,
Finish Establish
Communications
in the
MethodNotification
Routine

The tomctrl1_MethodNotification() routine must contain any action
that remains for any routine in the application after that routine executes a
Method. In the case of theradEstabComms_Click() routine, after the
Connect Method executes, you need to be able to set thetxtMdln and
txtSoftRev values in the GUI.

Inside the routine, you need aCase statement to check for each case of the
Method name, then take the appropriate action. For instance, if the Metho
just executed isConnect and its Service isGemEstablishCommunications,
then you must set the values for the two Outputs displayed in the GUI:

Select Case tomMethod.Name

'GemEstablishCommunications

Case "Connect"

txtMdln.Text = tomMethod.Outputs.Item("MDLN").Value

txtMdln.Refresh

txtSoftRev.Text = tomMethod.Outputs.Item("SOFTREV").Value

txtSoftRev.Refresh

...

End Select

See the Results Now, when the operator establishes communication with the equipment, t
MDLN and revision of the software on the equipment display:eqpsetup.pcx

In addition, when the application receives the status notification TOM sen
it displays the status message shown below:eqpmsg.pcx
2-6
Brooks Automation

Establishing Communication with EquipmentCarrying Out Tasks on Equipment
Complete Code of radEstabComms_Click

Private Sub radEstabComms_Click()

Dim clonedMeth As tom.Method

'Set attributes of the ProtocolSECS service.

'The GemEstablishCommunications service then uses runs the

'ProtocolSECS service when it communicates with the tool.

'For your tool, you may need to set additional attributes

'of this service.

m_oProtocolSecs.Attributes.Item("Baud").Value = "9600"

'For an HSMS connetion, set the following attributes:

m_oProtocolSecs.Attributes.Item("IPAddressLocal")._
Value = "0.0.0.0"

m_oProtocolSecs.Attributes.Item("IPAddressRemote")._
Value = "255.255.255.100"

m_oProtocolSecs.Attributes.Item("IPPortLocal").Value_
= "5000"

m_oProtocolSecs.Attributes.Item("IPPortRemote").Value_
= "5000"

'You would set only IPRemoteAddress and IPPortRemote attributes
'for a terminal server

'You set the PortType to HSMS by setting it to 1.
'Since you need to be able to test this sample without a tool,
'the PortType is being set to the default of 0 for an RS-232
'connection. For RS-232, you also needs to set the SerialPort.

m_oProtocolSecs.Attributes.Item("PortType").Value = "0"

m_oProtocolSecs.Attributes.Item(“SerialPort”).Value = “COM1”

'Establish communication with the tool.

'Use the reference to the GemEstablishCommunications service.

Set clonedMeth = m_oGemEstablishComms.Methods.Item_
("Connect").Clone

clonedMeth.Execute

ReportError "while opening the SECSProtocol Serial Port"

End Sub

C A U T I O N
This listing reflects the latest info on attribute settings
for ProtocolSECS. The data here supersedes that
shown in the sample code included with the product.
2-7
Application Developer’s Guide

Establishing Communication with Equipment Carrying Out Tasks on Equipment

ce to

r

the
Setting Up Collection Events

To set up events on the equipment, let’s use theGemReports Service. If you
look in TOM Explorer, you can see that this Service has anEnable Method
that requires one or more collection event IDs.

First, you must have declared the Service’s constant, generated a referen
it, and retrieved the Service from the database, all in theForm_Load routine:

Private Const SRV_GEMPROCESS = "GemProcessPrograms"

Private m_oGemReports As tom.Service

Set m_oGemReports = m_oTool.Resources.Item(1)._
Services.Item(SRV_GEMREPORTS)

Respond to Click
of Apply Button

You can have the code retrieve the collection event IDs when the operato
presses theApply button by putting the appropriate code into the
btnApply_Click() routine.

In this routine, the local variables for the collection events and the clone of
Method are:

Dim objDataItemCollectionEvents As DataItem

Dim clonedMeth As tom.Method

Test to see if the operator has toggled theSet Up Events radio button to
on, and as long as it is not on, exit the routine:

If radSetUpEvents.Value = 0 Then Exit Sub
2-8
Brooks Automation

Establishing Communication with EquipmentCarrying Out Tasks on Equipment

e

e

s

Clone the Method Once theSet Up Events radio button has been toggled on, to work with th
Service’s collection event ID DataItems you need to first clone theEnable
Method ofGemReports:

Set clonedMeth = m_oGemReports.Methods.Item("Enable").Clone

Retrieve
Collection Events
Data from Method

Now, you need to get theCollection event data from theEnable
Method’s Inputs collection:

Set objDataItemCollectionEvents = _
clonedMeth.Inputs.Item("Collection events")

Then, to clear out any collection event IDs already in the collection, use th
Clear Method of a DataItem object:

objDataItemCollectionEvents.Clear

Now you are ready to set the event IDs to the input from the GUI.

Set the Event IDs
Using GUI Entries

Once the operator enters event IDs into theEvent ID text boxes of the GUI,
your code can retrieve the event IDs (see below).chevents.pcx

Test eachEvent ID text box and if the text box does not contain an empty
string, add the collection event to the DataItem collection using theAdd
method of a DataItem object. TheAdd method takes the name of a DataDef a
an argument, in this case the name from the GUI:

If txtEventId1.Text <> "" Then

objDataItemCollectionEvents.Add (txtEventId1.Text)

End If

If txtEventId2.Text <> "" Then

objDataItemCollectionEvents.Add (txtEventId2.Text)

radSetUpEvents

txtEventId1

btnApply

txtEventId2

txtEventId3

txtEventId4
2-9
Application Developer’s Guide

Establishing Communication with Equipment Carrying Out Tasks on Equipment

d

End If

If txtEventId3.Text <> "" Then

objDataItemCollectionEvents.Add (txtEventId3.Text)

End If

If txtEventId4.Text <> "" Then

objDataItemCollectionEvents.Add (txtEventId4.Text)

End If

Execute Clone of
the Method

Once you have set all the collection event IDs, you can execute the clone
Enable Method ofGemReports:

clonedMeth.Execute

ReportError "while enabling a list of events"

When TOM sends program control to thetomctrl1_MethodNotification
routine, no other actions are required to complete the event setup.

Later, when the message executes, you see the following message:
evtmsg.pcx

N OT E If you run the sample program, you must enter CEIDs from
the collection. You must spell the name exactly, including
blank spaces. Refer to the dictionary of the sample Tool
(BTU recipe example) in TOM Explorer; look under
Collection Events for a complete list. Some of those
used to test the sample include those below (all can beoff

or on, as shown for the first one):

Alarm belt fail off

Alarm belt fail on

Alarm conveyor speed off

Alarm package dropped off

Alarm rail position 1 off
2-10
Brooks Automation

Establishing Communication with EquipmentCarrying Out Tasks on Equipment
Complete Code of btnApply_Click()

Private Sub btnApply_Click()

On Error Resume Next

Dim objDataItemCollectionEvents As DataItem
Dim clonedMeth As tom.Method

If radSetUpEvents.Value = 0 Then Exit Sub

Set clonedMeth = m_oGemReports.Methods.Item_
("Enable").Clone

'Get the Collection event data item from Enable Method

Set objDataItemCollectionEvents = _
clonedMeth.Inputs.Item("Collection events")

'Clear out the possible previous list of event names.

objDataItemCollectionEvents.Clear

'Set Event Ids Names in the "Collection events" collection.

If txtEventId1.Text <> "" Then
objDataItemCollectionEvents.Add (txtEventId1.Text)

End If

If txtEventId2.Text <> "" Then
objDataItemCollectionEvents.Add (txtEventId2.Text)

End If

If txtEventId3.Text <> "" Then
objDataItemCollectionEvents.Add (txtEventId3.Text)

End If

If txtEventId4.Text <> "" Then
objDataItemCollectionEvents.Add (txtEventId4.Text)

End If

'Execute the Enable Method from the GemReports service.

clonedMeth.Execute

ReportError "while enabling a list of events"

End Sub
2-11
Application Developer’s Guide

Enabling and Disabling Alarms Carrying Out Tasks on Equipment

s is

ator
Enabling and Disabling Alarms

To enable and disable alarms, you can use theGemAlarmManagement
Service. To use the Service, you should declare its constant, generate a
reference to it, and retrieve the Service, all underForm_Load :

Private Const SRV_GEMALARMMGMT = "GemAlarmManagement"

Private m_oGemAlarmMgmt As tom.Service

Set m_oGemAlarmMgmt = m_oTool.Resources.Item(1)._
Services.Item(SRV_GEMALARMMGMT)

ReportError "while finding the GemAlarmManagement service"

If you look in TOM Explorer, you can see that the Service has several
Methods. The one that would disable an alarm, logically namedDisable , has
a single Input of an alarm ID. The Method that you use to enable all alarm
Enable All and has no Inputs. Let’s start with enabling alarms.

Enable Alarms To enable all alarms, you can have a routine that responds when the oper
selects theEnable Alarms radio button (see illustration). Have the routine

first clone theEnable All Method, then execute it:chalarms.pcx

Complete Code of
radEnableAlarms_Click

Private Sub radEnableAlarms_Click()

Dim clonedMeth As tom.Method

Set clonedMeth = m_oGemAlarmMgmt.Methods.Item_
("Enable All").Clone

clonedMeth.Execute

ReportError "while enabling GEM alarms"

radEnableAlarms

txtAlarmId

radDisableAlarms

b B
2-12
Brooks Automation

Enabling and Disabling AlarmsCarrying Out Tasks on Equipment

or
End Sub

After Enable All executes, you need not take any other action, so the
section oftomctrl1_MethodNotification() that tests for this Method
name and its Service name need not contain any additional code.

Disable Alarms To disable alarms, you can have a routine that responds when the operat
selects theDisable Alarm radio button and fills in theAlarm ID . You can
associate the routine with theDisable Alarm radio button and have it
check that theAlarm ID text box is not empty:

Private Sub radDisableAlarms_Click()

Dim clonedMeth As tom.Method

If txtAlarmId.Text = "" Then Exit Sub

...

End Sub

You can then clone theDisable Method using theClone method of a
Method object:

Set clonedMeth = m_oGemAlarmMgmt.Methods.Item("Disable").Clone

Once you have the clone of the Method, you also have clones of all of its
Inputs/Outputs. So, you can set the value of its alarm ID Input using the
txtAlarmId from the GUI:

clonedMeth.Inputs.Item("ALID").Value = txtAlarmId.Text

Once you have set the required Input, you can then execute the Method:

clonedMeth.Execute

When TOM sends control to thetomctrl1_MethodNotification routine,
no special action needs to take place there.

Complete Code of radDisableAlarms_Click

Private Sub radDisableAlarms_Click()

Dim clonedMeth As tom.Method

If txtAlarmId.Text = "" Then Exit Sub

Set clonedMeth = m_oGemAlarmMgmt.Methods.Item_
("Disable").Clone

clonedMeth.Inputs.Item("ALID").Value = txtAlarmId.Text

clonedMeth.Execute

ReportError "while disabling alarm" & Str(txtAlarmId)

End Sub
2-13
Application Developer’s Guide

Selecting and Downloading a Recipe Carrying Out Tasks on Equipment

ng
Selecting and Downloading a Recipe

Next, you want to have code for:

■ Browse button with a text box that receives a recipe file
■ Combo box where the operator can pull down a list of recipes

Use Browse
Button to Retrieve
Recipe File

To retrieve the file name through a browse button, the sample application
includes the Common Dialog control in its form (see illustration at beginni
that follows).common.pcx

The sample application uses the
FileName method of the Common
Dialog control (commdlg) to retrieve the
file the operator selects and place it in
the GUI text box namedtxtFileName ;

the routine’s code appears below (for more detail, refer to the Visual Basic
documentation):

Private Sub btnBrowse_Click()

commdlg.DialogTitle = "Find Recipe file"

commdlg.ShowOpen

txtFileName = commdlg.FileName

End Sub

btnBrowse

txtFileName

cboRecipe

Messages later
appear here

Common
Dialog
control
2-14
Brooks Automation

Selecting and Downloading a RecipeCarrying Out Tasks on Equipment

can

ing
List Recipes in
Combo Box

To see what kind of recipes the program should list in the combo box, you
execute theList all Method ofGemProcessPrograms in TOM Explorer
and then check under the Methods tab to see the resulting recipes:

You can see that there are four recipes. When theList all Method executes
from inside your code, it also produces this list of Outputs. You must, of
course, clone the Method, then execute it, in response to an operator click
on the combo box:

Complete Code of
cboRecipe_Click

Private Sub cboRecipe_Click()

Dim cloneMethLocal As tom.Method

If txtFileName.Text = ““ Then Exit Sub

Set cloneMethLocal = m_oGemProcess.Methods.Item_
("List all").Clone

cloneMethLocal.Execute

ReportError "while listing all recipes"

End Sub

To put the recipes resulting from theList all Method into the pulldown
menu, you retrieve the Outputs from the Methodafter the Method executes,
which means you must retrieve those Outputs after TOM sends a Method
completed notification to the application. In the
tomCtrl1_MethodNotification routine, you develop a case for when the
Method isList all and the Service isGemProcessPrograms:

Code of
MethodNotification for
List all Method

Private Sub tomCtrl1_MethodNotification(ByVal tomMethod As
Object)

Dim counter

...

Select Case tomMethod.Name

'GemProcessPrograms

Case "List all"

If tomMethod.Service.Name = SRV_GEMPROCESS Then

For counter = 1 To 4

cboRecipe.AddItem tomMethod.Outputs._
Item(counter).Value

Next counter

cboRecipe.Refresh
2-15
Application Developer’s Guide

Selecting and Downloading a Recipe Carrying Out Tasks on Equipment

t.

t

tput
Call Upload_Recipe(tomMethod, cboRecipe.Text)

End If

End Select

End Sub

Using aFor/Next loop, you can retrieve the recipes from theList all
Method’s Outputs. Using theItem method of a DataItem object (remember,
Inputs and Outputs are DataItems), you get theValue property and associate
it with its counter number to position it in the pulldown list. Using the
AddItem method in Visual Basic, you add the recipes to the combo box lis

Upload/Download
Recipe Operator
Selects

Then you can call another routine. You pass it the name of the Method las
executed and the name of the recipe the operator selected in the GUI:

Call Upload_Recipe(tomMethod, cboRecipe.Text)

In theUpload_Recipe routine, you work with yet another Service, called
VFEIResourceTransfer. You use itsResource request upload Method to
send some fundamental Inputs to the Tool so that you can retrieve the Ou
from this Method and use it as an Input to the next Method,Resource
transfer download . You can see the relationship between the two
Methods in the illustration from TOM Explorer shown below:
2-16
Brooks Automation

Selecting and Downloading a RecipeCarrying Out Tasks on Equipment

ful
n
an

sure

he
Pass Data
from One Method
to Another

Passing data from one Method to another inside a TOM application is use
when you are daisy-chaining Methods together in a sequence. Although i
this example, you pass data between Methods of the same Service, you c
also use this same technique to pass data from one Service’s Method to
another Service’s Method.

Let’s see how you can use theResource body Output fromResource
request upload as an Input toResource transfer download .

You also pass some Inputs from the upload to the download Method, to en
the Methods use the same Inputs.

Let’s see how that works. Begin by defining the the routine so it receives t
two arguments:

Private Sub Upload_Recipe(RecipeMethod As tom.Method, Recipe As
String)

Next, you set cloneResource request upload :

Dim clonedMeth As tom.Method

Set clonedMeth = m_oVFEIResourceXfer.Methods._
Item("Resource request upload").Clone

Then you set its Inputs using theItem method of a DataItem object and
setting theValue property for each:

clonedMeth.Inputs.Item("Resource type").Value = "Recipe"
clonedMeth.Inputs.Item("Resource ID").Value = Recipe
clonedMeth.Inputs.Item("Resource file").Value = txtFileName

Finally, you execute the Method using theExecute method of a Method
object:

clonedMeth.Execute

ReportError "while requesting recipe upload"

Once the Method executes, TOM sends program control to the
tomCtrl1_MethodNotification routine, where you create a case for
when the TOM Method isResource request upload and the Service is
VFEIResourceTransfer. In that case, you deal with the Output from the
Method. You set theTag property of the TOM Method to the value of the
Output by using theItem method of a DataItem object and retrieving that
object’sValue property:

Code of
MethodNotification for
Resource request
upload Method

Private Sub tomCtrl1_MethodNotification(ByVal tomMethod As
Object)
...

'VFEIResourceTransfer Resource Request Upload method

Case "Resource request upload"

If tomMethod.Service = SRV_VFEIRESXFER

tomMethod.Tag = tomMethod.Outputs.Item("Resource_
2-17
Application Developer’s Guide

Selecting and Downloading a Recipe Carrying Out Tasks on Equipment

m

body").Value

Call Download_Recipe(tomMethod, cboRecipe.Text)

End Select

End Sub

Once you have set the tag, you call theDownload_Recipe routine and pass
it the TOM Method and the recipe name from thecboRecipe text box:

Call Download_Recipe(tomMethod, cboRecipe.Text)

Remember the Method being passed in to the routine is theResource
request upload Method, so the next routine can retrieve the values from
both its Inputs and its Outputs. Now, let’s see how you would have
Download_Recipe use those Inputs and Outputs.

Use Inputs and
Outputs from
Another Method

First, you generate the routine and clone theResource transfer
download Method within the routine:

Private Sub Download_Recipe(RecipeMethod As tom.Method, Recipe
As String)

Dim clonedMeth As tom.Method

Set clonedMeth = m_oVFEIResourceXfer.Methods.Item_
("Resource transfer download").Clone

End Sub

Now, you want to copy both the Inputs and the Outputs from previously
executed Method to this one. Because you passed in the name of the
previously executed recipe inRecipeMethod and you have the soon-to-be-
executed Method stored in theclonedMeth variable, you can work with the
two Services and set the cloned Method’s Input items using the Inputs fro
the previously executed Method:

clonedMeth .Inputs.Item("Resource type").Value = RecipeMethod ._
Inputs.Item("Resource type").Value

clonedMeth.Inputs.Item("Resource ID").Value = RecipeMethod._
Inputs.Item("Resource ID").Value

clonedMeth.Inputs.Item("Resource file").Value = RecipeMethod._
Inputs.Item("Resource file").Value

You use theItem method of each Input on both sides of the assignment
operator.

N OT E TOM Tip—Copying Data from One Service to Another

To pass data from one Service to another, you should map
the Outputs of the Service Method that has the information
to the Inputs of the Service Method you want to pass the data
into.
2-18
Brooks Automation

Selecting and Downloading a RecipeCarrying Out Tasks on Equipment

ou

not
To set the last Input to the Output from the previously executed Method, y
set it to theTag from that Method, which you can still access because you
have passed that other Method’s name to this Method:

clonedMeth.Inputs.Item("Resource body").Value =_
RecipeMethod.Tag

Finally, you can execute the cloned Method:

clonedMeth.Execute

ReportError "while downloading recipe"

When you execute this Method, you receive no Outputs from it and need
take any action in thetomCtrl1_MethodNotification routine.

Complete Code of Upload_Recipe

Private Sub Upload_Recipe(RecipeMethod As tom.Method, Recipe As
String)

Dim clonedMeth As tom.Method

Set clonedMeth = m_oVFEIResourceXfer.Methods.Item_
("Resource request upload").Clone

clonedMeth.Inputs.Item("Resource type").Value = "Recipe"

clonedMeth.Inputs.Item("Resource ID").Value = Recipe

clonedMeth.Inputs.Item("Resource file").Value = _
txtFileName

clonedMeth.Execute

ReportError "while requesting recipe upload"

End Sub

Complete Code of Download_Recipe

Private Sub Download_Recipe(RecipeMethod As tom.Method, Recipe
As String)

Dim clonedMeth As tom.Method

Set clonedMeth = m_oVFEIResourceXfer.Methods.Item_
("Resource transfer download").Clone

'Copy inputs from previously exeuted method to this one.
'Also copy outputs from previously executed method to this
'one. RecipeMethod contains the previously executed method.

clonedMeth.Inputs.Item("Resource type").Value = _
RecipeMethod.Inputs.Item("Resource type").Value

clonedMeth.Inputs.Item("Resource ID").Value = _
RecipeMethod.Inputs.Item("Resource ID").Value

clonedMeth.Inputs.Item("Resource file").Value = _
RecipeMethod.Inputs.Item("Resource file").Value
2-19
Application Developer’s Guide

Selecting and Downloading a Recipe Carrying Out Tasks on Equipment

e

s
e

e to
clonedMeth.Inputs.Item("Resource body").Value = _
RecipeMethod.Tag

clonedMeth.Execute

ReportError "while downloading recipe"

End Sub

See the Results When an operator runs the application, you can browse the network for th
file containing the recipe:select1.pcx

Now the pulldown list of recipes becomes available in the combo box:
select2.pcx

After you select the file containing that recipe, when you select the recipe
name, the application executes the Methods. When TOM sends the statu
notifications to the application, you see each related status message in th
GUI. Due to the 10 second delays added to the sample code, you have tim
read each message before the next Method executes.
2-20
Brooks Automation

Selecting and Downloading a RecipeCarrying Out Tasks on Equipment
The three messages you see, in sequence, are shown below:
message1.pcx message2.pcx message3.pcx

To generate a delay between messages, the sample application uses theSleep
statement from a Windows Visual Basic library. Refer to the Appendix,
Application Code, p. A-1, for more information and for a complete list of the
code.
2-21
Application Developer’s Guide

INFO
Tips and Tricks 3

Topics in this chapter

This chapter presents a few tips and tricks to follow when writing TOM
applications.

Using Non-Modal Dialog Boxes, p. 3-2

Using Daisy-Chained Services/Methods, p. 3-2

Using Variables to Maintain Context, p. 3-3

Waiting for Events, p. 3-3

Stopping an Application, p. 3-3
3-1
Application Developer’s Guide

Using Non-Modal Dialog Boxes Tips and Tricks

n-

y
e

wn
Using Non-Modal Dialog Boxes

To display a dialog box from the application, you need to be sure it is a no
modal dialog box. For example, to display a form named NotifyForm, you
would use Show 0:

NotifyForm.Show 0

Using Daisy-Chained Services/Methods

The best approach to using multiple Services is daisy-chaining Services b
having one Service call another. This technique is essentially the techniqu
thatGemEstablishCommunications uses when it callsProtocolSECS. You
cannot see this action taking place—it happens in the background. Your o
custom Services can take similar action. For more information on writing
Services, refer to theTool Object Model (TOM) Service Developer’s Guide.

C A U T I O N
You should avoid using modal dialog boxes in TOM
applications. Do not display a form that waits for a
reply usingShow 1 , because that makes the form a
modal dialog box. When you use a modal dialog box
in a TOM application, TOM Core becomes
suspended—all action stops.

To display the form in a non-modal dialog box, you
should always use theShow 0 method rather than
Show 1 .

N OT E TOM Tip—Using Daisy-Chained Services/Methods

You can and should daisy chain Services by having one
Service call the Method of the next Service, and the Method
of the next Service call the Method of another Service, and
so on.
3-2
Brooks Automation

Using Variables to Maintain ContextTips and Tricks

ross
Using Variables to Maintain Context

A recommended way you can use local variables is to maintain context ac
multiple routines or Services. Remember, you can use theTag property of a
Service to pass information from that Service to another Service.

Waiting for Events

Stopping an Application

N OT E TOM Tip—Maintaining Context across Routines/Services

To maintain context across multiple routines/Methods, you
should declare a local variable and pass it from routine to
routine (or Service to Service). Each routine (or Service)
then knows what the previous routine has done or can use
information from the Method that just executed.

N OT E TOM Tip—Waiting for Events

Your application cannot receive Events from the TOM
control or any control duringForm_Load . So, do not have
your code wait for an Event inForm_Load .

N OT E TOM Tip—Stopping an Application While Method Is Active

You should always stop an application between Method
invocations, rather than while a Method is running.
3-3
Application Developer’s Guide

INFO
Application Code A
Appendix

Topics in This Appendix

This appendix presents the full code for the sample application.

The code for the application is included in the Service’s Developer’s Kit
(SDK) in a project namedmyrecipe.vbp. You can find this project under
FASTech\Sw\Dev\Samples\apps\MyRecipe.

Complete Code of Recipe Application, p. A-2

General Declarations, p. A-2

ReportError Function, p. A-3

btnApply_Click Routine, p. A-3

btnBrowse_Click Routine, p. A-4

ButtonHelp_Click Routine, p. A-4

cboRecipe_Click Routine, p. A-4

Form_Load Routine, p. A-5

lSetupService Routine That Form_Load Calls, p. A-6

Form_Unload Routine, p. A-7

radDisableAlarms_Click Routine, p. A-7

radEnableAlarms_Click Routine, p. A-8

radEstabComms_Click Routine, p. A-8

tomCtrl1_EventNotification Routine, p. A-9

tomCtrl1_MethodNotification Routine, p. A-9

Upload_Recipe Routine, p. A-10

Download_Recipe Routine, p. A-11

tomCtrl1_StatusNotification Routine, p. A-11

ButtonExit_Click Routine, p. A-11

txtEventId_Change Routine, p. A-12

txtAlarmId_Click Routine, p. A-12
A-1
Application Developer’s Guide

Complete Code of Recipe Application Application Code Appendix
Complete Code of Recipe Application

' ---- FASTech Integration. Copyright 1996-1997

' Sample code is provided to customers for unsupported

' use only. Technical Support will accept notification

' of problems in sample services and applications, but

' FASTech will make no guarantee to fix the problems in

' current or future releases.

General Declarations

Option Explicit

' This is the TOM tool used in the TOM Application

Private Const TOOL_NAME = "BTU recipe example"

' This is the database file where the tool is defined

Private Const DATABASE_NAME = "myrecipe.mdb"

' Where you can find help file info about this application

' For a detailed explanation of this application, please refer

' to the TOM Application Developer’s Guide

‘ on the CD in Acrobat PDF format.

' Private Const APP_HELPFILE = "myrecipe.hlp"

' Private Const APP_HELP_CONTEXT = 50001

' Specify needed services

' using their generic service names.

Private Const SRV_GEMPROCESS = "GemProcessPrograms"

Private Const SRV_VFEIRESXFER = "VFEIResourceTransfer"

Private Const SRV_GEMALARMMGMT = "GemAlarmManagement"

Private Const SRV_GEMREPORTS = "GemReports"

Private Const SRV_GEMESTABCOMMS = "GemEstablishCommunications"

Private Const SRV_PROTOCOLSECS = "ProtocolSECS"

' A TOM application must keep a reference to the top-level

' TOM object over the lifetime of TOM tools.

Private m_oTOM As tom.ToolObjectModel

' After our tool is instantiated, this reference keeps it

N OT E Thesleep statement in this code is available only if you
declare the appropriate library by having the following
Declare statement in a .bas file (the sample one is in
recipe.bas):

Declare Sub Sleep Lib “kernel32” (ByVal dwMilli-
seconds As Long)
A-2
Brooks Automation

Complete Code of Recipe ApplicationApplication Code Appendix
Private m_oTool As tom.Tool

' References to service objects used in application

Private m_oGemProcess As tom.Service

Private m_oVFEIResourceXfer As tom.Service

Private m_oGemAlarmMgmt As tom.Service

Private m_oGemReports As tom.Service

Private m_oGemEstablishComms As tom.Service

Private m_oProtocolSecs As tom.Service

' References to other objects

Private m_oCurrStatusLabel As Label

ReportError Function

'ReportError function called when an error occurs

Public Sub ReportError(strMessage As String)

If (Err.Number <> 0) Then

MsgBox "Error " & Str(Err.Number) & "(" & Err.Description_
& ")" & strMessage

End If

End Sub

btnApply_Click Routine

Private Sub btnApply_Click()

Dim objDataItemCollectionEvents As DataItem

Dim clonedMeth As tom.Method

On Error Resume Next

' Set up events on the tool.

' Use the reference to the GemReports service.

If radSetUpEvents.Value = 0 Then Exit Sub

Set clonedMeth = m_oGemReports.Methods.Item_
("Enable").Clone

'Get "Collection event" data item from "Enable" Method

Set objDataItemCollectionEvents = _

clonedMeth.Inputs.Item("Collection events")

'Clear out the possible previous list of event IDs.

objDataItemCollectionEvents.Clear

'Set Event Ids Names in the "Collection events" collection.

If txtEventId1.Text <> "" Then

objDataItemCollectionEvents.Add (txtEventId1.Text)

End If

If txtEventId2.Text <> "" Then
A-3
Application Developer’s Guide

Complete Code of Recipe Application Application Code Appendix
objDataItemCollectionEvents.Add (txtEventId2.Text)

End If

If txtEventId3.Text <> "" Then

objDataItemCollectionEvents.Add (txtEventId3.Text)

End If

If txtEventId4.Text <> "" Then

objDataItemCollectionEvents.Add (txtEventId4.Text)

End If

'Execute Enable Method from GemAlarmManagement service.

clonedMeth.Execute

ReportError "while enabling a list of events"

End Sub

btnBrowse_Click Routine

Private Sub btnBrowse_Click()

 commdlg.DialogTitle = "Find Recipe file"

 commdlg.ShowOpen

 txtFileName = commdlg.filename

End Sub

ButtonHelp_Click Routine

Private Sub ButtonHelp_Click()

' HelpByContext Me.hwnd, APP_HELPFILE, APP_HELP_CONTEXT

End Sub

cboRecipe_Click Routine

Private Sub cboRecipe_Click()

Dim cloneMethLocal As tom.Method

'The following statement clones the "List all" method of the
'GemProcessPrograms service, which it extracts and stores in
'm_oGemProcess when the form loads and the Form_Load()
'routine executes. To clone the Method, the statement below
'uses the Clone method of the Method object. Since the clone
'has local scope, when the routine is over, the clone is gone.

If txtFileName.Text = ““ Then Exit Sub

Set cloneMethLocal = m_oGemProcess.Methods._
("List all").Clone

cloneMethLocal.Execute

ReportError "while listing all recipes"

End Sub
A-4
Brooks Automation

Complete Code of Recipe ApplicationApplication Code Appendix
Form_Load Routine

' When the main form is loaded, the app must initialize

' the TOM Core. Then it can proceed to instantiate your tool.

Private Sub Form_Load()

Dim ToolTypes As tom.ToolTypes

Dim ToolType As tom.ToolType

Dim MsgForm As frmMessage

Dim fSuccessfulStartup As Boolean

On Error Resume Next

‘While startup has not successfully completed, set local var

‘to False. Later, when form has loaded, set it to True.

fSuccessfulStartup = False

' App.HelpFile = APP_HELPFILE

' Me.HelpContextID = APP_HELP_CONTEXT

' Create the TOM Core

Err.Clear

Set m_oTOM = CreateObject("tom.ToolObjectModel")

If Err Then

ReportError “ while creating TOM object “ & Err.Description

Else

' User can specify an alternative database

If Command <> "" Then

m_oTOM.DefinitionFile = Command

Else

m_oTOM.DefinitionFile = DATABASE_NAME

End If

' Now, Initialize the TOM Core

Err.Clear

m_oTOM.Initialize tomCtrl1

If Err Then

ReportError “ while initializing TOM Core“_
& Err.Description

Else

' Find our tool in the ToolTypes collection

Set ToolTypes = m_oTOM.ToolTypes

Set ToolType = ToolTypes.Item(TOOL_NAME)

' Show progress status dialog while TOM instantiates

' the tool. Then catch StatusNotification events sent
A-5
Application Developer’s Guide

Complete Code of Recipe Application Application Code Appendix
' by the TOM Control and display the events in this

' dialog.

Set MsgForm = New frmMessage

MsgForm.Show

MsgForm.Refresh

Set m_oCurrStatusLabel = MsgForm.LabelMsg

' Tell TOM Core to instantiate the tool

' Assign a unique name to this instantiation

Err.Clear

Set m_oTool = m_oTOM.Tools.Add(ToolType, "BTU Tool")

If Err Then

MsgBox "Unable to create tool: " & Err.Description,_
vbExclamation, App.Title

End If

' Now display status notifications in our main window

Set m_oCurrStatusLabel = LabelStatus

Unload MsgForm

‘Set up Service objects in separate routine

lSetupServices

‘Now that form has loaded and services are ready,

‘set local var to True.

fSuccessfulStartup = True

End If

If Not fSuccessfulStartup Then

Unload Me

End If

End Sub

lSetupService Routine That Form_Load Calls

The example uses a separate routine that it calls from withinForm_Load to
get a reference to each Service it uses:

Private Sub lSetupServices()

On Error Resume Next

' Find the Service objects you want/extract each from collection

Set m_oGemProcess = m_oTool.Resources.Item(1)._
Services.Item(SRV_GEMPROCESS)

ReportError "while finding the GemProcessPrograms Service"

Set m_oVFEIResourceXfer = m_oTool.Resources.Item(1)._
Services.Item(SRV_VFEIRESXFER)

ReportError "while finding the VFEIResourceTransfer Service"

Set m_oGemAlarmMgmt = m_oTool.Resources.Item(1)._
Services.Item(SRV_GEMALARMMGMT)
A-6
Brooks Automation

Complete Code of Recipe ApplicationApplication Code Appendix
ReportError "while finding the GemAlarmManagement Service"

Set m_oGemReports = m_oTool.Resources.Item(1)._
Services.Item(SRV_GEMREPORTS)

ReportError "while finding the GemReports Service"

Set m_oGemEstablishComms = m_oTool.Resources.Item(1)._
Services.Item(SRV_GEMESTABCOMMS)

ReportError "while finding the GemEstablishCommunications
Service"

Set m_oProtocolSecs = m_oTool.Resources.Item(1)._
Services.Item(SRV_PROTOCOLSECS)

ReportError "while finding the ProtocolSECS Service"

Exit Sub

End Sub

Form_Unload Routine

Private Sub Form_Unload(Cancel As Integer)

' Remember to set m_oTOM to nothing, so it can go away.

Set m_oTool = Nothing

Set m_oTOM = Nothing

Set m_oCurrStatusLabel = Nothing

End Sub

radDisableAlarms_Click Routine

Private Sub radDisableAlarms_Click()

Dim clonedMeth As tom.Method

If txtAlarmId.Text = "" Then Exit Sub

'Disable a single GEM alarm.

'Use the reference to the GemAlarmManagement service

'First clone Disable method of GemAlarmManagement service.
'Then set the ALID variable in the input collection of the
'Disable Method.

Set clonedMeth = m_oGemAlarmMgmt.Methods.Item_
("Disable").Clone

clonedMeth.Inputs.Item("ALID").Value = txtAlarmId.Text

'Execute Disable method from GEMAlarmManagement service.

clonedMeth.Execute

'After you call Execute method of a Method object,
'the TOM Core has a reference to the object as long as the
'routine is executing. After the routine finishes executing 'TOM
Core no longer retains the reference.
'After this routine ends, the reference goes away. You can
'also save the reference after the method is complete in order
'to maintain access to outputs from the method. If you want to
'save a method after it has executed, you should create a
A-7
Application Developer’s Guide

Complete Code of Recipe Application Application Code Appendix
'global reference for it rather than a reference local
'to the routine.

ReportError "while disabling alarm" & Str(txtAlarmId)

End Sub

radEnableAlarms_Click Routine

Private Sub radEnableAlarms_Click()

Dim clonedMeth As tom.Method

' Enable all GEM alarms.

' Use the reference to the GemAlarmManagement service

Set clonedMeth = m_oGemAlarmMgmt.Methods.Item_
("Enable All").Clone

' Run 'Enable All' Method from GEMAlarmManagement service.

clonedMeth.Execute

ReportError "while enabling GEM alarms"

End Sub

radEstabComms_Click Routine

Private Sub radEstabComms_Click()

Dim clonedMeth As tom.Method

'Set attributes of the ProtocolSECS service.

'The GemEstablishCommunications service then uses runs the

'ProtocolSECS service when it communicates with the tool.

'For your tool, you may need to set additional attributes

'of this service.

m_oProtocolSecs.Attributes.Item("Baud").Value = "9600"

m_oProtocolSecs.Attributes.Item("IPAddressLocal")._
Value = "0.0.0.0"

m_oProtocolSecs.Attributes.Item("IPAddressRemote")._
Value = "255.255.255.100"

'You would set the IPPortLocal and IPPortRemote attributes for
'a terminal server

m_oProtocolSecs.Attributes.Item("IPPortLocal").Value_
= "5000"

m_oProtocolSecs.Attributes.Item("IPPortRemote").Value_
= "5000"

'You set the PortType to HSMS by setting it to 1.
'Since you need to be able to test this sample without a tool,
'the PortType is being set to the default of 0 for an RS-232
'connection. For RS-232, you also needs to set the SerialPort.

m_oProtocolSecs.Attributes.Item("PortType").Value = "0"

m_oProtocolSecs.Attributes.Item(“SerialPort”).Value = “COM1”

'Establish communication with the tool.
A-8
Brooks Automation

Complete Code of Recipe ApplicationApplication Code Appendix
'Use the reference to the GemEstablishCommunications service.

Set clonedMeth = m_oGemEstablishComms.Methods.Item_
("Connect").Clone

clonedMeth.Execute

ReportError "while opening the SECSProtocol Serial Port"

End Sub

tomCtrl1_EventNotification Routine

Private Sub tomCtrl1_EventNotification(ByVal tomEvent As Object)

Select Case tomEvent.Name

Case "Alarm set"

If m_oCurrStatusLabel Is Nothing Then Exit Sub

m_oCurrStatusLabel = tomEvent.Outputs.
Item("ALTX").Value & “ Alarm set”

m_oCurrStatusLabel.Refresh

Case "Alarm clear"

If m_oCurrStatusLabel Is Nothing Then Exit Sub

m_oCurrStatusLabel = tomEvent.Outputs.Item_
("ALTX").Value & “ Alarm cleared”

m_oCurrStatusLabel.Refresh

End Select

End Sub

tomCtrl1_MethodNotification Routine

Private Sub tomCtrl1_MethodNotification(ByVal tomMethod As
Object)

Dim counter

Select Case tomMethod.Name

'GemAlarmManagement Enable All method

Case "Enable all"

'GemAlarmManagement Disable method

Case "Disable"

'GemEstablishCommunications

Case "Connect"

'Retrieve the model number and software revision from the
'outputs of the method.

'The statements shown below set MDLN and SOFTREV fields
'in the GUI using the Value property of the outputs from
'the Connect method:

If tomMethod.Service.Name =SRV_GEMPROCESS Then

txtMdln.Text = tomMethod.Outputs.Item("MDLN").Value

txtMdln.Refresh

txtSoftRev.Text = tomMethod.Outputs.Item("SOFTREV").Value
A-9
Application Developer’s Guide

Complete Code of Recipe Application Application Code Appendix
txtSoftRev.Refresh

End If

'GemReports

Case "Enable"

'GemProcessPrograms List All method

Case "List all"

'Retrieves the Recipes from the Outputs that the application
'set when it executed the "List all" method of the
'GemProcessPrograms service(in cboRecipe_Click() routine)

If tomMethod.Service.Name = SRV_GEMPROCESS Then

For counter = 1 To 4

cboRecipe.AddItem tomMethod.Outputs.Item(counter)._
Value

Next counter

cboRecipe.Refresh

‘ Delay -- Strictly for demo purposes. Delays next Method

‘ so you may read the status message that is displaying.

Sleep 5000

' Calling Upload Recipe

Call Upload_Recipe(tomMethod, cboRecipe.Text)

End If

'VFEIResourceTransfer Resource Request Upload method

Case "Resource request upload"

If tomMethod.Service.Name = VFEIRESXFER Then

tomMethod.Tag = tomMethod.Outputs.Item_
("Resource body").Value

‘ Delay -- Strictly for demo purposes. Delays next Method

‘ so you may read the status message that is displaying.

Sleep 5000

Call Download_Recipe(tomMethod, cboRecipe.Text)

End If

'VFEIResourceTransfer Resource Transfer Download method

Case "Resource transfer download"

End Select

End Sub

Upload_Recipe Routine

Private Sub Upload_Recipe(RecipeMethod As tom.Method, Recipe As
String)

Dim clonedMeth As tom.Method

Set clonedMeth = m_oVFEIResourceXfer.Methods.Item_
("Resource request upload").Clone

clonedMeth.Inputs.Item("Resource type").Value = "Recipe"
A-10
Brooks Automation

Complete Code of Recipe ApplicationApplication Code Appendix
clonedMeth.Inputs.Item("Resource ID").Value = Recipe

clonedMeth.Inputs.Item("Resource file").Value = _
txtFileName

clonedMeth.Execute

ReportError "while requesting recipe upload"

End Sub

Download_Recipe Routine

Private Sub Download_Recipe(RecipeMethod As tom.Method, Recipe
As String)

Dim clonedMeth As tom.Method

Set clonedMeth = m_oVFEIResourceXfer.Methods.Item_
("Resource transfer download").Clone

'Copy inputs from previously exeuted method to this one.
'Also copy outputs from previously executed method to this
'one. RecipeMethod contains the previously executed method.

clonedMeth.Inputs.Item("Resource type").Value = _
RecipeMethod.Inputs.Item("Resource type").Value

clonedMeth.Inputs.Item("Resource ID").Value = _
RecipeMethod.Inputs.Item("Resource ID").Value

clonedMeth.Inputs.Item("Resource file").Value = _
RecipeMethod.Inputs.Item("Resource file").Value

clonedMeth.Inputs.Item("Resource body").Value = _
RecipeMethod.Tag

clonedMeth.Execute

ReportError "while downloading recipe"

End Sub

tomCtrl1_StatusNotification Routine

Private Sub tomCtrl1_StatusNotification(ByVal StatusText As
String)

If m_oCurrStatusLabel Is Nothing Then Exit Sub

m_oCurrStatusLabel = StatusText

m_oCurrStatusLabel.Refresh

End Sub

ButtonExit_Click Routine

Private Sub ButtonExit_Click()

Unload Me

End Sub
A-11
Application Developer’s Guide

Complete Code of Recipe ApplicationApplication Code Appendix
txtEventId_Change Routine

Private Sub txtEventId_Change()

 If radEnableAlarms.Value = 0 Then

 Exit Sub

 Else

 Call btnApply_Click

 End If

End Sub

txtAlarmId_Click Routine

Private Sub txtAlarmID_Click()

 If radDisableAlarms.Value = False Then

 Exit Sub

 Else

 Call radDisableAlarms_Click

 End If

End Sub
A-12
Application Developer’s Guide

INFO..

Index
A

alarms
disabling 2-12, 2-13
enabling 2-12

applications
cleaing up objects on termination 1-23
compiling 1-24
sample

purpose 1-3
steps to writing 1-2
stopping 3-3
terminating 1-23

Attributes
setting to communicate with equipment 2-

C

constants
Service 1-10

context across multiple routines
maintaining 3-3

controls
declaring 1-11
required 1-5, 1-7

custom controls
required 1-5

D

database
assigning to application 1-8
operator entering name 1-13

database constant
declaring 1-8

DataDefs
setting for Method 2-9

dialog boxes
restrictions 3-2
TOM Application Developer’s Guide
3

E

equipment
communication with

Attributes
finding 2-2
required 2-3

establishing 2-2
Services required 2-2, 2-4
setting Attributes 2-3

Event notifications 1-22
setting up 1-22

Events
waiting for

restrictions 3-3

F

Form_Load 1-12
restrictions 1-15

Form_Unload 1-23
forms

unloading 1-23

G

GemAlarmManagement 2-12
GemEstablishCommunications

executing 2-4
GemProcessPrograms 2-15
GemReports 2-8

H

Help button
code for 1-23

Help file
tying in 1-9, 1-23

I

Inputs
Index-1

Index

INFO..

6

setting for Method 2-9
setting with Outputs 2-16

L

Lights Out TOM Control 1-5

M

Method completion
notifications 1-19

setting up 1-20
MethodNotification

completing Method execution 2-6
List all 2-15
Resource request upload 2-17
when TOM calls 1-19

Methods
cloned

adding data to 2-9
completing execution 2-6
daisy-chaining 2-17, 3-2
Disable 2-13
Enable All 2-12
executing 1-19, 2-5, 2-10
Inputs

setting with Outputs 2-16
List all 2-15
Outputs

using to set Inputs 2-16
passing data from one to another 2-17
Resource request upload 2-16
Resource transfer download 2-17, 2-18

N

notifications
Event 1-22
Method completion 1-20
status 1-21

O

Outputs
retrieving from Method 2-15
using to set Inputs of another Method 2-1
Index-2
P

private constants
recommended 1-8

ProtocolSECS Service
Attributes required 2-2

R

recipes
downloading 2-14
retrieving list 2-15
selecting 2-14

references
required 1-6

declaring 1-10
Services 1-11
Tool object 1-11
Tool Object Model 1-10

required Services
finding 1-15
retrieving 1-15

Resource request upload Method 2-16
Resource transfer download Method 2-17, 2-18

S

Services
daisy-chaining 3-2
GemAlarmManagement 2-12
GemEstablishCommunications 2-4
GemProcessPrograms 2-15
GemReports 2-8
Methods

completing execution 2-6
executing 1-19, 2-5

passing values between 2-18
ProtocolSECS 2-2
references 1-11
required

finding 1-15
retrieving 1-15

retrieving from database 1-15
setting up events 2-8
standard

selecting 1-10
Brooks Automation

Index

INFO..
VFEIResourceTransfer 2-16
standard Services

selecting 1-10
status notifications 1-21

T

TOM control 1-5
adding to application 1-7
name in application 1-7

TOM Core
creating 1-12
Event notifications 1-22
initializing 1-13
Method completion notifications 1-20
status notifications from 1-21

TOM Tool constant
TOM Application Developer’s Guide
declaring 1-8
tomctrl 1-5
Tool 1-12
Tool object

instantiation 1-11
preparing for 1-13

instantiation process 1-14
references 1-11

Tool Object Model 1-6
reference 1-10

Tool Object Model object
creating 1-12

V

VFEIResourceTransfer 2-16
Index-3

	Developing Simple Application 1
	What Is a TOM Application?
	Writing a TOM Application in Visual Basic
	Defining the Application
	Adding TOM Control to Visual Basic Toolbox
	Creating Reference to the Tool Object Model
	Putting a TOM Control in the Application
	Selecting a Tool from the Database
	Tying in a Help File
	Selecting Standard Services
	Declaring References
	Generating Code to Trigger When Form Loads
	Retrieving and Setting Service Attributes
	Executing a Service Method
	Receiving Method Completion Notifications from TOM Core
	Receiving Status Notifications from TOM Core
	Receiving Event Notifications from TOM Core
	Creating Code for Help Button
	Unloading the Application Form
	Compiling the Application in Visual Basic Project

	Carrying Out Tasks on Equipment 2
	Establishing Communication with Equipment
	Setting Up Collection Events
	Enabling and Disabling Alarms
	Selecting and Downloading a Recipe

	Tips and Tricks 3
	Using Non-Modal Dialog Boxes
	Using Daisy-Chained Services/Methods
	Using Variables to Maintain Context
	Waiting for Events
	Stopping an Application

	Application Code A
	Complete Code of Recipe Application

	Index

